
REALNETWORKS PRODUCTION GUIDE
With RealPlayer 10

Last Update: 20 July 2004

RealNetworks, Inc.
PO Box 91123
Seattle, WA 98111-9223
U.S.A.

http://www.real.com
http://www.realnetworks.com

©2002, 2004 RealNetworks, Inc. All rights reserved.

Information in this document is subject to change without notice. No part of this document may be reproduced
or transmitted in any form or by any means, electronic or mechanical, for any purpose, without the express
written permission of RealNetworks, Inc.

Printed in the United States of America.

Helix, Helix DNA, the Helix logo, the Real "bubble" (logo), RBN, RealArcade, RealAudio, Real Broadcast
Network, Real.com, RealJukebox, RealMedia, RealNetworks, RealOne, RealPix, RealPlayer, RealPresenter,
RealProducer, RealProxy, RealSystem, RealText, RealVideo, SureStream, and TurboPlay are trademarks or
registered trademarks of RealNetworks, Inc.

Other product and corporate names may be trademarks or registered trademarks of their respective companies.

SUMMARY OF CONTENTS
DOCUMENTATION RELEASE NOTE ... 1

INTRODUCTION ...5

PART I: GETTING STARTED WITH STREAMING MEDIA

1 NEW FEATURES ... 17

2 PRESENTATION PLANNING ...27

PART II: PRODUCING CLIPS

3 AUDIO PRODUCTION ...59

4 VIDEO PRODUCTION .. 73

5 FLASH ANIMATION ... 87

PART III: WRITING MARKUP

6 REALTEXT MARKUP ...107

7 REALPIX MARKUP .. 145

PART IV: LEARNING SMIL

8 SMIL BASICS .. 189

9 CLIP SOURCE TAGS ...207

PART V: ORGANIZING A PRESENTATION

10 PRESENTATION INFORMATION .. 237

11 GROUPS... 247

12 LAYOUT ... 269

PART VI: TIMING AND LINKING CLIPS

13 BASIC TIMING..313

14 ADVANCED TIMING .. 339

15 HYPERLINKS...359

PART VII: MASTERING ADVANCED FEATURES

16 TRANSITION EFFECTS ...393

17 ANIMATIONS ... 419
iii

RealNetworks Production Guide
18 SWITCHING ...441

19 PREFETCHING..469

PART VIII: STREAMING YOUR PRESENTATIONS

20 WEB PAGE EMBEDDING ..481

21 PRESENTATION DELIVERY ...505

PART IX: BASIC INFORMATION

A BASIC QUESTIONS ...533

B PRODUCTION TASKS ...543

C COLOR VALUES..555

PART X: SYNTAX SUMMARIES

D SMIL TAG SUMMARY ...561

E REALTEXT TAG SUMMARY ...587

F REALPIX TAG SUMMARY ..593

G RAM FILE SUMMARY ..599

H FILE TYPE SUMMARY ..601

I LANGUAGE CODES ..603

GLOSSARY ...605

INDEX..613
iv

CONTENTS
DOCUMENTATION RELEASE NOTE 1

Latest Additions ... 1
July 2004 ... 1
September 2002... 2
July 2002 ... 2

Known Issues ... 3
Undocumented Features ... 3
Netscape Navigator 6 Issues.. 4

INTRODUCTION 5

What This Guide Covers ... 5
How this Guide Is Organized... 7
How to Download This Guide to Your Computer ..11
Conventions Used in this Guide..12
Additional Resources ...13
Technical Support ...13

PART I: GETTING STARTED WITH STREAMING MEDIA

1 NEW FEATURES 17

RealPlayer 10 Introduced ...17
SMIL 2.0 Support ..17
New Clip Tag Attributes...18
Expanded Grouping Possibilities...19
Enhanced Layout Choices ..20
More Timing Possibilities ...21
New Linking Attributes ..22
Clip Transition Effects..23
SMIL Animations...23
Powerful Content Control Capabilities ...23
Additions and Deletions to this Guide ..24

2 PRESENTATION PLANNING 27

Step 1: Decide How to Deliver Clips ...27
Helix Server Streaming ...27
v

RealNetworks Production Guide
Web Server Downloading ..29
Local Playback ..29

Step 2: Learn the RealPlayer 10 Interface ..29
The Three-Pane Environment ...30
The Media Playback Pane ..31
The Related Info Pane ...34
The Media Browser Pane ...36
Using Media Clips to Open HTML Pages ..37
Controlling a Presentation Through HTML Pages..38

Step 3: Choose Clip Types and Gather Tools...39
Audio and Video ...39
SMIL ..41
Animation ..41
Images..42
Text ..42
Autoupdate Feature ..43

Step 4: Develop a Bandwidth Strategy ..45
Buffering...45
Audience Bandwidth Targets ...46
Clip Bandwidth Characteristics ..48
Reaching Multiple Audiences ...49

Step 5: Organize the Presentation Timeline ...51
Timeline Considerations ..52
Timelines for Multiclip Presentations..52
Timeline Management ...54

Step 6: Get Started With Production ..54

PART II: PRODUCING CLIPS

3 AUDIO PRODUCTION 59

Understanding RealAudio..59
Bandwidth and Audio Quality..59
RealAudio Bandwidth Characteristics...60
RealAudio Codecs ...61
Steps for Streaming Audio ...65

Capturing Audio ...67
Source Media..67
Recording Equipment..67
Shielded Cables...68
Input Levels...68
Volume Levels for Live Broadcasts ..68
Sampling Rates ...69
vi

Contents
Optimizing Audio ..69
DC Offset ...69
Normalization ...70
Dynamics Compression ...70
Equalization..70

4 VIDEO PRODUCTION 73

Understanding RealVideo...73
RealVideo Bandwidth Characteristics ...74
RealVideo Frame Rates ..75
RealVideo Clarity ...76
RealVideo Codecs..77
Steps for Streaming Video ..78

Recording Video ..80
Source Media Quality ..80
Video Staging ..81
Scene Changes and Movement...81
Colors and Lighting ...81
Video Output ..82
Color Depth..82

Digitizing Video ...82
Digitized Video Formats...82
Video Capture Dimensions...82
Video Capture Frame Rates..83
Computer Speed and Disk Space..83
Video Encoding Dimensions...84
High-Bandwidth and Low-Bandwidth Streaming Audiences...........................85

5 FLASH ANIMATION 87

Understanding Flash..87
Software Versions for Flash ..88
Flash in the Three-Pane Environment..88
Flash Bandwidth Characteristics...88
Flash Clip Size ...90
Flash CPU Use...91

Adding Audio to Flash ...92
Adding Event Sounds...92
Using a Continuous Soundtrack...92
Dividing Bandwidth Between Flash and RealAudio..93
Tips for Choosing RealAudio Codecs..95

Using Interactive Flash Commands ...96
Flash Clip Timeline Commands ..96
RealPlayer Commands...96
vii

RealNetworks Production Guide
Go To Commands...98
Load Movie Commands ..98
Secure Transactions ..100
Mouse Events..101

Streaming a Flash Clip ...101

PART III: WRITING MARKUP

6 REALTEXT MARKUP 107

Understanding RealText...107
RealText Language Support ...108
Text Alternatives..108
Structure of a RealText Clip ...108
Rules for RealText Markup...109
RealText Bandwidth ..109
RealText in a SMIL Presentation ...110
RealText Broadcast Application ...110

Setting RealText Window Attributes ...110
Specifying the Window Type ..111
Setting the Window Size and Color ..113
Setting the Clip Duration ...114
Adding a Version Number..116
Specifying Hyperlink Appearance ...117
Controlling Text Flow ..117

Timing and Positioning Text...119
Controlling When Text Appears and Disappears ...120
Clearing Text from the Window..122
Positioning Text in a Window...122
Aligning Text in a Tickertape Window...123
Ensuring Text Delivery..123

Specifying Languages, Fonts, and Text Colors ...124
Specifying the Character Set...124
Setting the Font ..127
Setting the Text Size...129
Controlling Text Colors ...130

Controlling Text Layout and Appearance ..131
Adding Space Between Text Blocks...132
Centering Text...133
Preformatting Text ..133
Using HTML-Compatible Tags...133
Emphasizing Text ..134

Creating Links and Issuing Commands ...135
viii

Contents
Creating a Mail Link ..135
Opening Media or HTML Pages ...135
Issuing RealPlayer Commands..137

Using Coded Characters ..137
Using Coded Characters with the mac-roman Character Set138

RealText Examples ...139
Generic Window..139
Tickertape Window ...140
Scrolling News Window ...141
Teleprompter Window...142

7 REALPIX MARKUP 145

Understanding RealPix ...145
RealPix and SMIL ..146
Image Formats and Features ..148
RealPix Timelines...150
Structure of a RealPix File...150
Rules for RealPix Markup ...151
RealPix Broadcast Application ...151

Managing RealPix Bandwidth...152
Estimating the Required Bandwidth and Preroll ..152
Calculating Individual Image Streaming Times ..154
Lowering RealPix Preroll ...155
Masking Preroll With Other Clips ...155

Setting Slideshow Characteristics ...156
Defining the Presentation Size ..157
Specifying the Time Format..157
Setting the Presentation Duration ..158
Controlling the Streaming Bit Rate ...159
Defining the Title, Author, and Copyright ...159
Creating a Background Color ...160
Setting a Preroll Value..160
Adding a Presentation URL ..161
Handling Image Aspect Ratios ...161
Setting the Maximum Frames Per Second..162

Defining Images ..163
Creating an Image Handle ...163
Specifying an Image File Name and Path...164
Indicating the Image Size for Web Servers ...164
Setting the Mime Type ...165

Using Common Transition Effects Attributes...165
Setting an Effect Start Time..166
ix

RealNetworks Production Guide
Specifying an Effect Duration ...166
Selecting the Image Target ...167
Creating an Effect URL ..167
Changing an Image’s Aspect Ratio ...168
Capping an Effect’s Frame Rate ...168

Creating RealPix Transition Effects ...168
Fading In on an Image ...169
Fading an Image Out to a Color...170
Crossfading One Image Into Another ...170
Painting a Color Fill ...171
Creating a Wipe Effect ...172
Controlling an Animated GIF Image ...173
Zooming In, Zooming Out, and Panning ..174

Controlling Image Size and Placement ..177
Defining Source and Destination Attributes ..178
Exhibiting Part of an Image in the Entire Display Area..................................179
Showing All of an Image in Part of the Display Area180
Filling Part of the Display Area with Part of the Source Image181

RealPix Example ..182
Step 1: Determine the Bandwidth Use ..182
Step 2: Write the RealPix File..184
Step 3: Write the SMIL File...185

PART IV: LEARNING SMIL

8 SMIL BASICS 189

Understanding SMIL..189
Advantages of Using SMIL ...190
SMIL 1.0 and SMIL 2.0..191
SMIL 2.0 Modules...191
SMIL 2.0 Profiles ...193
Interoperability Between SMIL-Based Players ..194

Creating a SMIL File ..195
The SMIL 2.0 Tag and Namespace ...196
Header and Body Sections ...196
Tags, Attributes, and Values ..198
Binary and Unary Tags...199
SMIL Recommendations..200
SMIL Tag ID Values ...200

Using Customized SMIL Attributes ...201
RealNetworks Extensions Namespace...202
System Component Namespace...202
x

Contents
A Closer Look at Namespaces ..202
Tips for Defining Namespaces..203

Viewing SMIL Source Markup...204
Playback Differences from SMIL 1.0..204

Behavioral Changes ...204
Updating SMIL 1.0 Files to SMIL 2.0 ..205

9 CLIP SOURCE TAGS 207

Creating Clip Source Tags ..207
Adding a Clip ID..208
Setting a Clip’s Streaming Speed ..208
Creating a Brush Object...211
Using a Ram File as a Source..211
Using a SMIL File as a Source ...212

Writing Clip Source URLs...213
Linking to Local Clips ..214
Creating a Base URL ..215
Linking to Clips on Helix Server ..216
Linking to Clips on a Web Server ..216
Caching Clips on RealPlayer...217

Modifying Clip Colors..220
Adjusting Clip Transparency and Opacity ...220
Substituting Transparency for a Specific Color ..222
Substituting a Color for Transparency ..225

Adding Text to a SMIL Presentation..225
Displaying a Plain Text File...226
Writing Inline Text ...227
Changing Text Characteristics ..229

PART V: ORGANIZING A PRESENTATION

10 PRESENTATION INFORMATION 237

Understanding Presentation Information ..237
Information Encoded in Clips ..237
Clip Source Tag and Group Information ...238
SMIL Presentation Information ..238
Accessibility Information..239
RealPlayer Related Info Pane..239
Coded Characters ...239

Adding Clip and Group Information...240
Where Title, Author, and Copyright Information Displays............................240
Using Clips Within Groups...241

Defining Information for the SMIL Presentation ..242
xi

RealNetworks Production Guide
Example of Presentation and Clip Information..243
Adding Accessibility Information ..243

Including an Alternate Clip Description ..244
Using a Long Description...244
Setting the Clip Read Order ...245

11 GROUPS 247

Understanding Groups ..247
Groups Within Groups ..248

Playing Clips in Sequence...249
Creating Sequences Without Sequence Tags ...250
Tips for Creating Sequences ...250

Playing Clips in Parallel ..251
Tips for Creating Parallel Groups ...252

Synchronizing Playback in Parallel Groups ..252
Creating an Independent Timeline..253
Setting the Synchronization Behavior..254
Specifying Synchronization Behavior Default Values257
Loosening the Synchronization for Locked Elements....................................259
Specifying Synchronization Tolerance Default Values...................................259
Tips for Synchronizing Clips ...260

Creating an Exclusive Group...261
Defining Interactive Begin Times ..261
Using Clip Interruption ..262
Modifying Clip Interruption Behavior ...263
Tips for Defining Exclusive Groups and Priority Classes................................267

12 LAYOUT 269

Understanding Layouts..269
Root-Layout Area ..269
Playback Regions ..270
Subregions..270
Secondary Media Playback Windows..271
Clip Position and Fit..273
Tips for Laying Out Presentations...274
Layout Tag Summary...277

Creating Main and Secondary Media Windows...278
Defining the Main Media Playback Pane...278
Creating Secondary Media Playback Windows ..279
Controlling Resize Behavior ...281

Defining Playback Regions ...281
Setting Region IDs and Names ...282
Defining Region Sizes and Positions ...283
xii

Contents
Assigning Clips to Regions ...289
Stacking Regions That Overlap...290
Adding Background Colors ..292
Controlling Audio Volume in a Region..294
Defining Subregions ..294

Positioning Clips in Regions ...297
Using Alignment Values ...298
Defining Registration Points in Clip Source Tags ...298
Creating a Reusable Registration Point ...300

Fitting Clips to Regions ..303
fit Attribute Values ..304
Overriding a Region’s fit Attribute ..305
Tips for Defining the fit Attribute..305

Layout Examples ...306
Centering a Video on a Background Image..306
Displaying a Letterbox Clip ..307
Turning Down an Audio Clip’s Volume...307
Playing Three Clips Side-by-Side ...308
Placing a Clip in a Secondary Media Playback Window................................309
Playing the Same Clip in Multiple Regions...309

PART VI: TIMING AND LINKING CLIPS

13 BASIC TIMING 313

Understanding Basic Timing ..313
Groups Create the Timing Superstructure ...313
Timing is Relative to Groups ..314
Timing Attributes Covered in this Chapter ..314

Specifying Time Values...315
Using Shorthand Time Values...315
Using the Normal Play Time Format ...316

Setting Begin and End Times ..316
Using a Begin Time with a Clip ...317
Using an End Time with a Clip ...317
Using Begin and End Times with Groups...317

Setting Internal Clip Begin and End Times...318
Combining clipBegin and clipEnd with begin and end319

Setting Durations ..319
Choosing end or dur..319
Setting a Duration for the Length of Media Playback320
Using an Indefinite Duration ..320
Tips for Setting Durations ..321
xiii

RealNetworks Production Guide
Setting Minimum and Maximum Times ..322
Ending a Group on a Specific Clip ..322

Stopping a Group After the Last Clip Plays ...322
Stopping the Group When a Specific Clip Finishes323
Tips for Using the endsync Attribute...324

Repeating an Element..325
Repeating an Element a Certain Number of Times.......................................325
Repeating an Element a Specific Amount of Time..325
Specifying the Length of Each Repeating Cycle ..326
Setting a Total Playback Time ..326
Looping Playback Indefinitely...326
Stopping a Clip’s Encoded Repetitions ...327
Managing Bandwidth with Repeating Clips ..327
Tips for Repeating Elements...328

Setting a Fill ..329
Using an Automatic Fill ...330
Setting a Fill with Sequential Clips..331
Setting a Fill in Parallel Groups...332
Setting a Fill in Exclusive Groups ..332
Displaying a Clip Throughout a Presentation ..332
Summary of Common Clip fill Values ...333
Setting a Group Fill ...334
Tips for Setting a Fill..335

Specifying a Default Fill..336
Adding a Default Fill to a Group ..336
Inheriting a Default Fill from a Containing Group337

14 ADVANCED TIMING 339

Understanding Advanced Timing..339
Advanced Timing Syntax ..339
Event Types...340
Positive Offset Times ...341
Negative Offset Times..343
Multiple Timing Values ..344

Defining an Element Start or Stop Event ...344
Sample Values...345
Example..345

Defining a Repeat Event...346
Sample Values...347
Example..347

Defining a Mouse Event ...348
Sample Values...349
xiv

Contents
Examples ..349
Defining a Keyboard Event ...351

Sample Values ...352
Example..352
Tips for Defining Keyboard Events ..352

Defining a Secondary Window Event ..353
Sample Values ...354
Example..354

Using Media Markers...354
Coordinating Clips to an External Clock ...354
Controlling Whether an Element Restarts ...354

Setting a Default Restart Value...355

15 HYPERLINKS 359

Understanding Hyperlinks ..359
Links to HTML Pages ...359
Links to Streaming Media ..360
Methods of Activating a Link..361
General Tips for Creating Hypertext Tags ..361

Creating a Simple Link ...362
Using the <area/> Tag ...362

Creating a Timed Link..363
Defining Hot Spots..364

Defining Basic Hyperlink Properties ..369
Specifying the Link URL ...369
Leaving Out a URL Reference for Hot Spots ..370
Opening a Link on a Keystroke ...370
Opening a URL Automatically ..371
Displaying Alternate Link Text ..372
Setting a Tab Index for Multiple Links...372

Linking to HTML Pages ..373
Selecting a Browsing Window ..374
Opening HTML Pages in the Related Info Pane ...375
Targeting a Frame or Named Window ..377
Controlling the Media Playback State ...378
Tips for Opening HTML Page Links ..378

Linking to Streaming Media ...379
Replacing the Source Presentation..379
Opening a New Media Playback Window with SMIL....................................380
Linking to a SMIL Fragment ...382
Adjusting Audio Volumes in Linked Presentations384
 Opening a Media Playback Window with a Clip Link384
xv

RealNetworks Production Guide
Hyperlink Examples ...388
Opening Web Pages During a Presentation...388
Opening Pages on a Mouse Click ...389

PART VII: MASTERING ADVANCED FEATURES

16 TRANSITION EFFECTS 393

Understanding Transition Effects ...393
Timelines and Transition Effects...394
Layouts and Transition Effects ...394
Animations and Transition Effects..394
Audio and Transition Effects..394
Multiple Clips with Transition Effects ...395
Summary of Transition Effects Tags..395

Defining Transition Types ..395
Edge Wipe Transition Effects ...396
Iris Wipe Transition Effects ..399
Clock Wipe Transition Effects ..401
Matrix Wipe Transition Effects ...404
Fade, Push, and Slide Transition Effects..407

Modifying Transition Effects ..408
Setting a Transition Effect’s Duration ...409
Reversing a Transition Effect’s Direction ...409
Using Partial Transition Effects ..410
Repeating Transition Effects Horizontally or Vertically411
Setting a Border Width ..412
Defining Colors and Border Blends ..412

Assigning Transition Effects to Clips ...413
Using Clip Fills with Transition Effects ..414

Transition Effects Examples..416
Fading to a Color Between Clips ..416
Crossfading Videos..417

17 ANIMATIONS 419

Understanding Animations ..419
Animation Tags...420
Animation Tag Placement..420
SMIL Timing with Animations ..422
Simultaneous Animations ..423

Creating Basic Animations ...423
Selecting the Element and Attribute to Animate ..424
Defining Simple Animation Values..428
Defining a Range of Animation Values..430
xvi

Contents
Controlling How an Animation Flows ...431
Jumping from Value to Value..431
Moving Linearly from Point to Point ...432
Flowing at an Even Pace...432

Creating Additive and Cumulative Animations ..433
Adding Animation Values to a Base Value ...434
Making Animations Repeat and Grow ..434

Using the Specialized Animation Tags...436
Animating Colors ..436
Creating Horizontal and Vertical Motion ..437
Setting an Attribute Value ..438

Manipulating Animation Timing ..439

18 SWITCHING 441

Understanding Switching ...441
Creating a Switch Group..441
Adding a Default Option to a Switch Group ...442
Using Inline Switching..443
Available Test Attributes ..444
Tips for Writing Switch Groups ..444

Switching Between Language Choices ...446
Setting Language Codes...446
Providing Subtitles or Overdubbing ..447

Switching Between Bandwidth Choices...448
Switching with SureStream Clips ..449

Enhancing Presentation Accessibility ..450
Switching Based on the Viewer’s Computer ...451

Switching for CPU Type ...451
Switching for Operating System..452
Switching for Monitor Size or Color Depth ...453

Checking Components and Version Numbers..455
Defining Test Attributes in SMIL 2.0 ...455
Combining SMIL 2.0 with SMIL 1.0..456

Switch Group Examples ...458
Multiple Test Attributes ...458
Different Video Sizes Chosen Automatically ..459
Subtitles and HTML Pages in Different Languages460
System Captions Using RealText...462
Backward-Compatible SMIL File ..465
Full SMIL File Switching ...467

19 PREFETCHING 469

Understanding Prefetching...469
xvii

RealNetworks Production Guide
Using the <prefetch/> Tag ...470
Managing Prefetch Bandwidth ...471

Specifying Prefetch Bandwidth in Bits Per Second..471
Specifying Prefetch Bandwidth as a Percentage ...472

Controlling Prefetch Data Download Size ...473
Prefetching a Specific Amount of Data ...473
Prefetching a Specific Length of a Clip’s Timeline ..474

Tips for Prefetching Data ...474
RealAudio and RealVideo Prefetching...474
Prefetch URLs ...475
SMIL Timing with Prefetching ..475
Prefetch Testing ..476

Prefetching Examples...476
Displaying an Image Until Prefetching Completes..476
Prefetching and Caching an Image ...477

PART VIII: STREAMING YOUR PRESENTATIONS

20 WEB PAGE EMBEDDING 481

Understanding Web Page Embedding...481
Embedding vs. the Three-Pane Environment ...481
<EMBED> and <OBJECT> Tags ...483
Layout Possibilities ..483
RealPlayer Controls ...484
Javascript and VBScript..484

Using <EMBED> Tags..485
Setting <EMBED> Tag Parameters ...485
Specifying the Source...485
Setting the Width and Height...488
Turning off the Java Virtual Machine...488
Supporting Other Browsers..488

Using <OBJECT> Tags ...489
Setting <OBJECT> Tag Parameters ...489
Specifying the Source...490
Combining <EMBED> with <OBJECT>...490

Adding RealPlayer Controls ...490
Basic Controls...491
Individual Controls and Sliders ..492
Information Panels ..495
Status Panels ..496
Linking Multiple Controls ..497

Controlling Image Display..498
xviii

Contents
Setting a Background Color ...499
Centering a Clip ..499
Maintaining a Clip’s Aspect Ratio ..499
Suppressing the RealPlayer Logo ..500

Setting Automatic Playback ...501
Starting a Presentation Automatically...501
Looping a Presentation Continuously ...501
Specifying a Number of Loops..502
Setting Shuffle Play ..502

Laying Out SMIL Presentations...502
Defining the Layout with SMIL ...502
Defining the Layout with HTML ...503

21 PRESENTATION DELIVERY 505

Understanding Linking and URLs ...505
The Ram File ...505
The Difference Between RTSP and HTTP...507
Directory Paths and URLs ..508

Launching RealPlayer with a Ram File ...508
Writing a Basic Ram File ..509
Adding Comments to a Ram File ..510
Streaming Different Clips to Different RealPlayers510
Examples of Linking a Web Page to Clips ..512

Passing Parameters Through a Ram File..513
Opening a URL in an HTML Pane...514
Controlling How a Presentation Initially Displays ..517
Overriding Title, Author, and Copyright Information519
Setting Clip Information ..520

Using Ramgen for Clips on Helix Server...522
Linking Your Web Page to Helix Server Using Ramgen..................................523
Listing Alternative Presentations with Ramgen...525
Combining Ramgen Options..525

Hosting Clips on a Web Server ..525
Web Server MIME Types ..526
GZIP Encoding for Large Text Files..526
Limitations on Web Server Playback ...527

Testing Your Presentation...529
Using RealNetworks Logos ...530

PART IX: BASIC INFORMATION

A BASIC QUESTIONS 533

Playing Media with RealPlayer ..533
xix

RealNetworks Production Guide
Creating Streaming Clips ...534
Getting Production Tools...535
Using SureStream ..536
Writing SMIL Files ...537
Streaming Clips ...538
Broadcasting...539
Getting Technical Support ...541

B PRODUCTION TASKS 543

Streaming Media Concepts ..543
RealAudio Clips ..544
RealVideo Clips ...544
Flash Clips ..545
RealText Markup ...545
RealPix Markup ...546
Basic SMIL Questions ..546
Clips and URLs ...547
Colors and Transparency ...548
Layouts...548
Basic Timing and Groups...549
Advanced Timing ..550
Hyperlinks...550
Special Effects ...551
Advanced Streaming..551
Web Page Embedding..552
Presentation Delivery ...553

C COLOR VALUES 555

Using Color Names ...555
Defining Hexadecimal Color Values ..556

Using Six-Digit Hexadecimal Values ..556
Defining Three-Digit Hexadecimal Values..556

Specifying RGB Color Values ..557
Using Standard RGB Color Values..557
Specifying RGB Percentages ...557

Tips for Defining Color Values..558

PART X: SYNTAX SUMMARIES

D SMIL TAG SUMMARY 561

<smil>...</smil> ..561
Header Tags..561

<meta/> ...562
xx

Contents
<layout>...</layout>..562
<transition/>...566

Clip Source Tags..567
Streaming and Information..567
Timing and Layout ..568
Color and Transparency...570
Text Characteristics ...571
<prefetch/>...572

Group Tags ...573
<seq>...</seq> ..573
<par>...</par> ..574
<excl>...</excl> ...575
<switch>...</switch> ...577

Hyperlink Tags ..579
<a>......579
<area/>...579

Animation Tags ...581
<animate/> ...581
<animateColor/> ..583
<animateMotion/>..584
<set/>...585

E REALTEXT TAG SUMMARY 587

Window Tag Attributes..587
Time and Position Tags..588
Font Tag Attributes ...589
Layout and Appearance Tags ...589
Hyperlinking Commands ...590

F REALPIX TAG SUMMARY 593

<imfl>...</imfl>...593
<head/>..593
<image/> ..594
<animate/> ...594
<crossfade/> ...595
<fadein/>..596
<fadeout/> ...596
<fill/> ...597
<wipe/> ..597
<viewchange/> ..598

G RAM FILE SUMMARY 599

Parameter Syntax...599
xxi

RealNetworks Production Guide
Parameters and Values...599

H FILE TYPE SUMMARY 601

I LANGUAGE CODES 603

GLOSSARY 605

INDEX 613
xxii

DOCUMENTATION RELEASE NOTE
Thank you for using RealPlayer! This guide explains RealPlayer clip types,
such as RealVideo and RealText, and covers the use of the SMIL 2.0 standard,
along with the RealNetworks extensions to SMIL 2.0. Although RealPlayer 10
currently supports most SMIL 2.0 features, some additional features will be
added later, and will be made available automatically through RealPlayer’s
autoupdate feature. The following sections describe known issues with
content production in this release of RealPlayer.

Tip: See Chapter 1 for summaries of new SMIL 2.0 features, as
well as for information about additional changes to this guide
from Release 8.

Latest Additions
The following sections note significant additions to this guide following its
initial publication.

July 2004

This guide has been updated to cover the latest generation of RealNetworks
products, including RealPlayer 10, RealProducer 10, RealVideo 10, and a new
set of RealAudio codecs. The production methods for RealOne Player and
RealPlayer 10 are the same. RealOne Player requires a codec update to play
RealVideo 10 clips, as well as the new RealAudio codecs.

Note: The bandwidth simulator has been discontinued and is
no longer included with RealProducer Plus. This guide no
longer includes instructions on using the bandwidth
simulator.
1

RealNetworks Production Guide
September 2002

The following sections of this guide have been updated. Most of these features
require RealOne Player version 2 or later:

• Explained support for Flash sound effects in “Adding Audio to Flash” on
page 92.

• Updated the section on using a Ram file in a SMIL file, which is described
in “Using a Ram File as a Source” on page 211.

• Updated the section on using a SMIL file within a SMIL file, described in
“Using a SMIL File as a Source” on page 212. See “Full SMIL File
Switching” on page 467 for an example of using a single SMIL file to
switch between other SMIL files based on the viewer language preference.

• Explained how to use <param/> tags to modify characteristics of plain text
files and inline text clips within a SMIL presentation. See “Changing Text
Characteristics” on page 229.

• Updated the section on hyperlink access keys, as described in “Opening a
Link on a Keystroke” on page 370.

• Updated the section on linking to part of a SMIL file, as described in
“Linking to a SMIL Fragment” on page 382.

• An <area/> tag can now include both an href value to open an external
link, and an activateEvent value to trigger a SMIL element. For example, a
SMIL hyperlink can both play a video in the media playback pane and
open an HTML page in the related info pane. For more on <area/> see
“Using the <area/> Tag” on page 362. The section “Defining a Mouse
Event” on page 348 covers activateEvent.

• Updated information about the Ram file syntax for streaming different
clips to different versions of RealPlayer (RealOne Player version 1 supports
this syntax). See “Streaming Different Clips to Different RealPlayers” on
page 510.

• Added information about the showvideocontrolsoverlay Ram file
parameter. For more information, see “Controlling How a Presentation
Initially Displays” on page 517.

July 2002

• Updated the RealAudio chapter with information about the RealAudio
surround sound codecs. See “Stereo Surround Codecs” on page 64.
2

 Documentation Release Note
• Updated the RealVideo chapter to cover RealVideo 9. See “RealVideo 9
Codec” on page 78.

Known Issues
You may find discrepancies between the instructions in this guide and
RealPlayer performance. Known issues include the following:

• Secondary windows, which are described in the section “Secondary Media
Playback Windows” on page 271, are currently plain windows that do not
include the standard RealPlayer skin.

• The <area/> tag’s nohref attribute, described in “Leaving Out a URL
Reference for Hot Spots” on page 370, does not function.

• Targeting an HTML frame through SMIL, as described in “Targeting a
Frame or Named Window” on page 377, is not functional.

• Starting a linked clip somewhere in its timeline other than its normal
beginning, as described in “Linking to a Clip with a Timeline Offset” on
page 383, is not functional.

• Contrary to the information in “Replacing the Source Presentation” on
page 379, a source clip stops, rather than pauses, when another clip
replaces it in the media playback pane.

• Push wipe transitions, described in “Fade, Push, and Slide Transition
Effects” on page 407, are not yet functional.

• Prefetching, which is described in Chapter 19, is not functional.

Undocumented Features
The following aspects of RealPlayer functionality have not yet been
documented, and in most cases are not fully functional:

• Support for media markers. The section “Using Media Markers” on page
354 is a placeholder for this information.

• Support for wallclock timing. The section “Coordinating Clips to an
External Clock” on page 354 is a placeholder for this information.

• The min and max timing attributes. The section “Setting Minimum and
Maximum Times” on page 322 is a placeholder for this information.
3

RealNetworks Production Guide
• Time manipulations for animations. The section “Manipulating
Animation Timing” on page 439 is a placeholder for this information.

• The skip-content attribute.

• The <metadata> tag.

Netscape Navigator 6 Issues
There are two issues currently associated with using Netscape Navigator 6:

• If you embed a presentation in a Web page as described in Chapter 20, the
path to the .rpm file cannot contain spaces or even escape codes for spaces
(%20). This causes Navigator 6 to search for a missing plug-in.

• If you browse the HTML version of this guide with Navigator 6, you may
not be able to play the linked sample files. If this occurs, you can open the
sample files directly from the samples folder. You can also use Navigator
4.7 or Microsoft Internet Explorer (version 5.5 or later recommended) to
browse the guide.

Note: This linking problem affects only local, relative URLs to
clips played in RealPlayer. It does not affect streamed
presentations in which the viewer launches the presentation
from a Web page rendered in Navigator 6.

For More Information: The section “How to Download This
Guide to Your Computer” on page 11 explains how to get a
local copy of the HTML guide that includes sample files.
4

INTRODUCTION
RealPlayer™ gives you the power to deliver compelling multimedia
presentations over a network. This production guide will help you
produce any multimedia presentation, whether it is a simple video
on your home page or a multimedia extravaganza.

Tip: To experience the many possibilities of streaming media,
download RealPlayer from http://www.real.com, and then
visit http://guide.real.com.

What This Guide Covers
This production guide tells you how to create a RealPlayer presentation.
Although it provides many tips for producing streaming media, the more you
know about producing audio, video, and graphics in general, the faster you
will be able to create a great streaming presentation. Topics in this guide fall
into four general areas:

• Planning a Presentation

Before you launch into streaming media production, you need to consider
several issues carefully. What is your target bandwidth? What types of
clips will you use? How will your presentation timeline progress?
Addressing these issues is critical for producing a successful presentation.
To learn the basics, start with “Chapter 2: Presentation Planning”
beginning on page 27.

• Producing Clips

RealPlayer plays a core set of clip types: RealAudio®, RealVideo®, Flash,
RealText®, and RealPix™. You can stream just a single clip, or combine
various clips into a complex presentation. “Part II: Producing Clips”
beginning on page 57 explains these clip types.
5

RealNetworks Production Guide
Note: This guide does not explain how to use encoding tools
such as RealProducer™. For specific information about using
a particular tool, refer to the tool’s user’s guide or online help.

• Writing SMIL 2.0

To unify multiple clips into a single presentation, you use Synchronized
Multimedia Integration Language (SMIL), a mark-up language that you
can write with any text editor. If you’ve written HTML, you’ll find it easy
to pick up SMIL. To get started, turn to “Part IV: Learning SMIL”
beginning on page 187.

• Delivering a Presentation

Once you finish production, you’ll want to show off your work! “Part VIII:
Streaming Your Presentations” beginning on page 479 explains how to
stream your presentation from Helix Server or a Web server, as well as how
to embed it in a Web page.

Because this guide concerns streaming media production and the RealPlayer
core clip types, it does not cover the following topics:

• running Helix Server and broadcasting on the Internet

Helix Server is the streaming engine that drives streaming media across a
network. You can learn more about Helix Server from this Web address:

http://www.realnetworks.com/products/media_delivery.html

• using the RealPlayer interface

Available for free download from http://www.real.com, RealPlayer
includes a Help menu with entries that explain its many features.

• using RealPlayer Javascript and VBScript methods

To learn how to use Javascript or VBScript in the RealPlayer environment,
see RealPlayer Scripting Guide, available for download from the following
Web page:

http://service.real.com/help/library/encoders.html

• digital rights management for audio and video clips

RealNetworks’s digital rights management technology allows you to
protect copyrights for valuable media assets. You can learn more about
this technology from the following Web page:

http://www.realnetworks.com/products/drm/index.html
6

 Introduction
• encoding video and audio files for streaming

RealProducer is the tool you use to convert audio and video files into
streaming RealAudio and RealVideo clips. You can get RealProducer from
this Web page:

http://www.realnetworks.com/products/producer/index.html

• producing audio and video clips in formats other than RealAudio and
RealVideo.

RealPlayer can play many audio and video formats in addition to
RealAudio and RealVideo. For more information about the tools you can
use to produce media in these additional streaming formats, visit the
following Web page:

http://www.realnetworks.com/products/index.html

Tip: Although this guide does not explain how to produce
audio and video in formats such as MPEG, many of the tips
given in Chapter 3 and Chapter 4 apply to audio and video
production in general, regardless of the streaming format.

How this Guide Is Organized

Part I: Getting Started with Streaming Media

Whether you are new to streaming media, or an old hand, be sure to read the
following chapters.

Chapter 1: New Features

If you’re familiar with previous versions of RealNetworks software, this
chapter will give you a quick update on the many changes in this version.

Chapter 2: Presentation Planning

If you are new to streaming media, this chapter walks you through the steps
involved in putting together a RealPlayer presentation, explaining bandwidth
and timeline issues.

Part II: Producing Clips

The clip is the basic unit of a streaming media presentation. The following
chapters explain production issues for core RealPlayer clip types.
7

RealNetworks Production Guide
Chapter 3: Audio Production

This chapter gives you the background you need to create a RealAudio clip. It
then provides pointers on capturing and digitizing high-quality audio clips.

Chapter 4: Video Production

Read this chapter to learn how to capture high-quality video content and
optimize it for conversion to streaming RealVideo clips.

Chapter 5: Flash Animation

Using Macromedia’s Flash, you can produce dazzling animated presentations.
This chapter explains how to stream Flash clips to RealPlayer.

Part III: Writing Markup

Using RealNetworks markup languages, you can create additional types of
streaming clips.

Chapter 6: RealText Markup

With RealText, you can create text that displays at different times in your
presentation. This is a great way to provide video credits and subtitles, for
example.

Chapter 7: RealPix Markup

RealPix allows you to coordinate still images into streaming slideshows. When
accompanied by an audio soundtrack, RealPix presentations make a great
alternative to video.

Part IV: Learning SMIL

SMIL is the heart of streaming media, letting you pull together simple or
highly complex presentations. Read the following chapters to get started.

Chapter 8: SMIL Basics

After you create your multimedia clips, you write a SMIL file that pulls the
entire presentation together. This chapter explains the basic structure and
syntax of a SMIL file.

Chapter 9: Clip Source Tags

This chapter explains how to add clips to a SMIL presentation, explaining the
various streaming and download protocols, such as RTSP and HTTP.
8

 Introduction
Part V: Organizing a Presentation

When you stream multiple clips, you use SMIL to group your clips and lay out
the presentation. The following chapters explain how to organize your media.

Chapter 10: Presentation Information

This chapter demonstrates how to add presentation information to a SMIL
file to enhance the playback experience and aid viewer accessibility.

Chapter 11: Groups

This chapter shows you how to make clips play together or in a sequence.
Creating groups is the most basic way to set up a SMIL timeline.

Chapter 12: Layout

When clips play in parallel, you create a layout as described in this chapter.
You can even make new clips pop up in new windows.

Part VI: Timing and Linking Clips

Unlike a static Web page, streaming media flows. Timing is a key aspect of
SMIL, and the following chapters explain how to create a timeline, as well as
how to link to other resources.

Chapter 13: Basic Timing

The SMIL timing commands give you a powerful means to coordinate clip
playback. Read this chapter to learn the basics of how to use SMIL to modify a
presentation’s timeline.

Chapter 14: Advanced Timing

Once you’ve mastered the basics of SMIL timing as described in Chapter 13,
you’re ready to learn about the advanced SMIL timing features described here.

Chapter 15: Hyperlinks

Refer to this chapter to learn how SMIL’s hyperlinking capabilities let you
launch new clips or presentations.

Part VII: Mastering Advanced Features

SMIL is a powerful language that lets you add special effects to your
presentation. You can also use SMIL to manage bandwidth, and stream
different clips to different viewers.
9

RealNetworks Production Guide
Chapter 16: Transition Effects

SMIL provides over a hundred special effects you can use when a clip starts or
stops playback. This chapter shows you how to create eye-catching transitions.

Chapter 17: Animations

Read this chapter to learn how to use SMIL animations (not to be confused
with Flash animation) to create special effects while clips play.

Chapter 18: Switching

SMIL lets you stream different presentations based on viewer criteria, such as
available bandwidth or language preference. Read this chapter to learn about
SMIL’s switching capabilities.

Chapter 19: Prefetching

Prefetching is a powerful feature that lets you download clip data before a clip
plays. This can help prevent presentation rebuffering.

Part VIII: Streaming Your Presentations

When you finish production, you’re ready to make your presentation available
for viewing as described in the following chapters.

Chapter 20: Web Page Embedding

If you want to integrate your presentation seamlessly into your Web page,
follow the instructions in this chapter.

Chapter 21: Presentation Delivery

This chapter gives instructions for moving your streaming clips to Helix
Server and linking your Web page to them through a Ram file. It also explains
how to use a Web server to deliver simple presentations.

Part IX: Basic Information

The following appendixes gather useful information that will help you
whether you’re a novice or a professional.

Appendix A: Basic Questions

If you are new to streaming media, this appendix answers basic production
questions and points you to additional resources on the Internet.

Appendix B: Production Tasks

Consult this appendix when you want to carry out a specific production task,
but don’t know where to find the answer in this guide.
10

 Introduction
Appendix C: Color Values

This appendix covers the types of color values that you can use with SMIL,
RealText, and RealPix attributes.

Part X: Syntax Summaries

The remaining appendixes summarize the markup languages used with
RealPlayer.

Appendix D: SMIL Tag Summary

Once you understand SMIL, use this appendix as a reference for SMIL 2.0 tag
and attribute values.

Appendix E: RealText Tag Summary

This appendix summarizes RealText markup, which is explained in Chapter 6.

Appendix F: RealPix Tag Summary

Refer to this appendix for quick information on RealPix markup, which is
explained in Chapter 7.

Appendix G: Ram File Summary

Use this appendix as a quick reference to the Ram file parameters described in
Chapter 21.

Appendix H: File Type Summary

This appendix provides a quick reference for common file types used in
RealPlayer streaming.

Appendix I: Language Codes

If you create streaming clips in different languages as described in Chapter 18,
you use these codes in your SMIL file to indicate the language choices.

How to Download This Guide to Your Computer
RealNetworks makes this guide available in the following formats for
download to your computer:

• The HTML+Javascript version is available as a single, zipped archive that
includes utilities and samples that you can play in RealPlayer. It is highly
recommended for persons who want to learn SMIL markup. You can read
this version with Netscape Navigator or Microsoft Internet Explorer.
11

RealNetworks Production Guide
• The HTML Help version is available as a single .chm file for Windows 98
and later operating systems. It is identical to the HTML+Javascript
version, except that it does not contain any sample files. The HTML Help
version is smaller in size than the HTML+Javascript version, and it
includes a search function.

• An Adobe Acrobat (PDF) version includes page numbers in cross-
references, making it more useful than the HTML versions when printed.
You can download the free Acrobat viewer from Adobe’s Web site at
http://www.adobe.com/products/acrobat/readstep.html.

All of the online versions of this guide are available for individual download
from RealNetworks’ Technical Support Web site at:

http://service.real.com/help/library/encoders.html

Conventions Used in this Guide
The following table explains the typographical conventions used in this
production guide.

Notational Conventions

Convention Meaning

emphasis Bold text is used for in-line headings, user-interface
elements, URLs, and e-mail addresses.

terminology Italic text is used for technical terms being introduced,
and to lend emphasis to generic English words or
phrases.

syntax This font is used for fragments or complete lines of
programming syntax (markup).

syntax emphasis Bold syntax character formatting is used for program
names, and to emphasize specific syntax elements.

variables Italic syntax character formatting denotes variables
within fragments or complete lines of syntax.

[options] Square brackets indicate values that you may or may not
need to use. As a rule, when you use these optional values,
you do not include the brackets themselves.

choice 1|choice 2 Vertical lines, or “pipes,” separate values you can choose
between.

... Ellipses indicate nonessential information omitted from
examples.
12

 Introduction
Additional Resources
Most RealNetworks® manuals are available in both PDF and HTML formats
from the RealNetworks documentation library. The library’s main page is at
http://service.real.com/help/library/index.html. In addition to this
production guide, you may need the following resources:

• Introduction to Streaming Media

Start with this guide if you are new to streaming media. Written for the
beginning user, it explains how to put together a basic presentation using
different production techniques. Download this guide from
http://service.real.com/help/library/encoders.html.

• RealPlayer Scripting Guide

Available at http://service.real.com/help/library/encoders.html, this
guide explains how to use JavaScript or VBScript within the RealPlayer
three-pane environment, or for media embedded in a Web page.

• Helix Server Administration Guide

The basic reference for the Helix Server administrator, this guide explains
how to set up, configure, and run Helix Server to stream multimedia. You
need this guide only if you are running Helix Server yourself. It is available
at http://service.real.com/help/library/servers.html.

• Software Development Kits (SDKs)

RealNetworks offers SDKs, open source projects, and developer
information through the Helix Community:

http://www.helixcommunity.org

Technical Support
To reach RealNetworks’ Technical Support, please visit the following Web
page:

• http://service.real.com/main.html
13

RealNetworks Production Guide
14

P A R T
I

Par t I: GETTING STARTED WITH STREAMING MEDIA
Whether you are new to streaming media, or an old hand, this
section will get you rolling with the latest streaming technology.
Chapter 1 describes the many new features of RealPlayer, while
Chapter 2 explains the basics of putting together a streaming
presentation.

C H A P T E R
1

 Chapter 1: NEW FEATURES
RealPlayer 10 gives you more possibilities for creating Web-based
multimedia than ever. If you’re familiar with previous versions of
RealPlayer, this chapter gives you a quick look at the many changes
to streaming media production in RealPlayer.

RealPlayer 10 Introduced
The successor to RealPlayer 8 and RealOnePlayer, RealPlayer 10 provides the
most advanced media playback possibilities available, combining streaming
media, digital downloads, and Web browsing. For more on RealPlayer 10, see
“Step 2: Learn the RealPlayer 10 Interface” on page 29.

SMIL 2.0 Support
RealPlayer 10 and RealOne Player support SMIL 2.0, which adds many new
features to SMIL 1.0. These players are backwards-compatible with SMIL 1.0,
so they can play any existing SMIL presentation. RealPlayer G2, RealPlayer 7,
and RealPlayer 8 cannot play SMIL 2.0 presentations. These versions of
RealPlayer autoupdate to RealPlayer 10 before playing a SMIL 2.0 file. See
Chapter 8 for basic SMIL 2.0 information.

Note: This guide describes SMIL 2.0 only. For SMIL 1.0
information, see RealSystem iQ Production Guide for Release 8.
That guide is available in HTML and PDF formats at
http://service.real.com/help/library/encoders.html.

SMIL 2.0 Files Require an XML Namespace

A simple <smil> tag designates a SMIL 1.0 file. To write a SMIL 2.0 file, you
need to include an XML namespace like this:

<smil xmlns=“http://www.w3.org/2001/SMIL20/Language”>
17

RealNetworks Production Guide
For More Information: See “The SMIL 2.0 Tag and Namespace”
on page 196 for more information.

SMIL 2.0 Attributes Use “Camel Case”

In SMIL 2.0, most attributes and predefined values that have multiple words
now use camel case, in which all words are compounded and words following
to the first word are capitalized. For example, the system-bitrate attribute in
SMIL 1.0 becomes systemBitrate in SMIL 2.0. For more information, see “Tags,
Attributes, and Values” on page 198.

New and Updated SMIL Resources

In addition to the chapters that describe SMIL 2.0 features, this guide adds or
updates several resources that will help you with creating presentations:

• For information on updating SMIL 1.0 syntax to SMIL 2.0 standards, see
“Updating SMIL 1.0 Files to SMIL 2.0” on page 205.

• Appendix B addresses specific production questions by referring you to
the appropriate section in this guide.

• Appendix C explains the types of color values that you can specify.

• Appendix D provides a quick reference for SMIL tags and attributes that
will help you once you’re familiar with SMIL markup.

• Download the zipped HTML version of this production guide as
described in “How to Download This Guide to Your Computer” on page
11. Then choose Sample Files from the Go To menu to display links to
SMIL files that you can play in RealPlayer.

Introductory Production Guide

Beginning users, or those looking to create simple presentations, can start
with Introduction to Streaming Media, which is available for download at
http://service.real.com/help/library/index.html. That guide provides a
simplified, streamlined introduction to SMIL 2.0 and Ram files.

New Clip Tag Attributes
Chapter 9 explains the changes to SMIL clip source tags, such as <video/> tags.
SMIL 2.0 introduces several new clip attributes, as the following sections
explain.
18

CHAPTER 1: New Features
Color Attributes

As described in “Modifying Clip Colors” on page 220, RealPlayer supports new
color attributes that allow you to make the following transparent or semi-
transparent:

• any color or range of colors in a clip

• all colors in a clip

• a clip’s background color

Image Streaming Rates

SMIL 2.0 provides a new method for setting streaming rates for static clips
such as images. See “Setting a Clip’s Streaming Speed” on page 208.

Text Handling

In addition to support for RealText clips (.rt), RealPlayer and SMIL 2.0 can
display plain text files (.txt), and support the inclusion of text directly within
the SMIL markup. For more information, see “Adding Text to a SMIL
Presentation” on page 225.

Descriptive Metatags

In addition to title, author, copyright, and abstract attributes, clip source tags
can have alt, longdesc, and readIndex attributes. These attributes allow assistive
devices to read clip information for visually impaired viewers. For more
information, see “Adding Accessibility Information” on page 243.

Colored Objects with the <brush/> Tag

The <brush/> tag functions just like a clip source tag such as <video/>. It does
not link to a media clip, however. Instead, it defines a color that displays in a
region. For more information, see “Creating a Brush Object” on page 211.

Expanded Grouping Possibilities
Chapter 11 explains <seq> and <par> groups, which have changed little from
SMIL 1.0. It also covers the <excl> tag, which is new in SMIL 2.0.
19

RealNetworks Production Guide
Sequences Act Like a Single Presentation

In SMIL 2.0, a simple sequence of clips defined in a <seq> group acts like a
single presentation instead of a series of separate presentations. See “Playing
Clips in Sequence” on page 249 for more information.

New <excl> Groups

The exclusive group is a powerful feature that you can use to add interactivity
to a presentation. The new <excl> tag creates an exclusive group, in which only
one clip can play at a time. Unlike with a <seq> group, though, you can specify
the order in which the <excl> group members play, have them interrupt each
other, and select them based on any criteria, including mouse clicks. See
“Creating an Exclusive Group” on page 261 for more information.

Synchronizing Parallel Elements

The section “Synchronizing Playback in Parallel Groups” on page 252 explains
how to control which clips in parallel groups stay synchronized if bandwidth
drops. This advanced feature also lets you create an independent timeline for a
clip to make it act like a broadcast. In this case, viewers cannot rewind or fast-
forward through the clip.

Enhanced Layout Choices
Chapter 12 explains how to lay out clips in RealPlayer using SMIL 2.0 layout
tags and attributes, which provide many new layout possibilities. The
following sections describe the principal new features of SMIL 2.0 layout.

Secondary Pop-Up Windows

You can now use <topLayout> tags to create secondary media playback
windows that pop up during a presentation. This window is useful for playing
supplemental clips, or clips that do not fit the main media playback pane’s
layout. See “Secondary Media Playback Windows” on page 271 for more
information.

Subregions

The section “Subregions” on page 270 describes how to create regions within
regions. Creating a subregion is useful if you want to associate a smaller
region with a larger region so that the smaller region changes position
automatically if you reposition the larger region.
20

CHAPTER 1: New Features
Region Size and Position Attributes

To set a region’s size and position within a window, you can now use bottom
and right attributes, as well as height, width, left, and top. You can also use any
combination of these attributes to create a region, giving you more ways to
define layouts. See “Defining Region Sizes and Positions” on page 283 for
more information.

Registration Points

With registration points, which are described in the “Clip Position and Fit” on
page 273, you can easily position clips within large regions. You can use a
registration point to center clips, for example, or align them to a region’s
lower-right corner.

Region Transparency

RealPlayer supports true region transparency, meaning that clips behind
transparent areas of another clip are visible. See “Transparency in Regions and
Clips” on page 293 for more information.

Backgrounds Can Appear Only When Clips Play

You can now set region background colors to appear only when a clip plays in
the region. Previously, all regions and backgrounds appeared automatically at
the start of the presentation. See “Setting When Background Colors Appear”
on page 292 for more information.

More Timing Possibilities
SMIL 2.0 provides many new ways to construct presentation timelines.
Chapter 13 and Chapter 14 explain basic and advanced timing attributes,
respectively.

New Element Repeat Attributes

The new repeatCount and repeatDur attributes replace the SMIL 1.0 repeat
attribute. The new attributes let you specify a total number of repetitions, or
the total length of the repeating cycle, respectively. See “Repeating an
Element” on page 325 for details.
21

RealNetworks Production Guide
Additional f ill Values

The fill attribute includes new values (auto, default, hold, and transition) that let
you specify additional fill behaviors. A new fillDefault attribute lets you set the
fill behavior for entire groups. For more information, see “Setting a Fill” on
page 329, as well as “Specifying a Default Fill” on page 336.

Advanced Timing Values

See Chapter 14 for information on advanced SMIL timing values. These values
work with the begin and end attributes to start and stop elements when certain
events occur, such as when the viewer clicks a clip or presses a keyboard key.

New Linking Attributes
Chapter 15 covers hyperlinking, explaining how to link a SMIL presentation
to a Web page or another SMIL presentation.

The <area/> Tag Replaces <anchor/>

The SMIL 2.0 <area/> tag replaces the SMIL 1.0 <anchor/> tag. The <area/> tag
lets you turn an entire clip into a link, as well as create hot spots (image maps)
over a clip. You can now create hot spots as rectangles, circles, and polygons.
See “Using the <area/> Tag” on page 362.

New Ways to Open Links

SMIL 2.0 includes new ways to specify when a link opens. You can define a
keyboard key that the viewer can press to open a link, for instance, or you can
make links open automatically at any point in the presentation. See “Defining
Basic Hyperlink Properties” on page 369 for more information.

Ability to Control RealPlayer State

The SMIL attribute sourcePlaystate in a link controls RealPlayer’s state when a
link is clicked. You can make the RealPlayer presentation pause, stop, or
continue playing when the link opens. For more on sourcePlaystate , see
“Linking to HTML Pages” on page 373 or “Linking to Streaming Media” on
page 379.

RealPlayer Browsing Windows

RealOne Player and RealPlayer 10 on Windows include their own browsing
windows, which allow you to display HTML pages within the RealPlayer
22

CHAPTER 1: New Features
environment, as well as in the viewer’s default Web browser. The RealPlayer
related info window, which appears to the right of the media playback
window, can display HTML pages that supplement the streaming
presentation. For more information, see “Linking to HTML Pages” on page
373.

Clip Transition Effects
Chapter 16 explains how to define clip transition effects, which are special
effects that display when a clip starts or stops. You can use transition effects to
crossfade sequential clips, for example, or introduce a new clip with a slide, a
wipe, or over a hundred other effects found in professional video production.

SMIL Animations
Chapter 17 explains how to create SMIL animations, which are special effects
that display as a clip plays. You can use SMIL animations to shrink a clip,
move it around the screen, alter its background color, and change its volume
level, for example. Unlike Flash animation, SMIL animations are not clips.
Rather, they are instructions that tell RealPlayer how to alter the display of
other clips, whether videos, still images, audio clips, or so on.

Powerful Content Control Capabilities
SMIL 2.0 has sophisticated content control features that allow the advanced
SMIL author to tailor presentations for different audiences and network
conditions.

Additional Switching Test Attributes

SMIL 2.0 includes several new test attributes that you can use in <switch>
groups. These attributes let you display alternative presentations for different
monitor sizes or operating systems, for example. For a list of test attributes,
see “Available Test Attributes” on page 444.

Inline Switching

You can add any switching test attribute directly to a clip source tag or a group
tag without using a <switch> tag. RealPlayer then plays the clip or group only
if it satisfies the attribute value. Although not recommended for all situations
23

RealNetworks Production Guide
in which switching is required, inline switching can be useful in many cases.
For more information, see “Using Inline Switching” on page 443.

Prefetching Clip Data

With <prefetch/> tags, you can download clip data before clips play. This
feature gives you a powerful way to manage your presentation’s streaming
bandwidth. See Chapter 19 for information on prefetching.

Additions and Deletions to this Guide
In addition to describing new features of RealPlayer, this manual includes
several organizational changes from previous versions.

RealText and RealPix Markup Described

Chapter 6 and Chapter 7 of this guide provide instructions for writing
RealText and RealPix markup, respectively. The RealText Authoring Guide and
RealPix Authoring Guide, which cover RealText and RealPix through Release 8,
are obsolete, though still available for download from the RealNetworks
Technical Support Web site.

RealPlayer 10 does not include significant updates to RealText and RealPix,
and the RealText and RealPix clips you create according to instructions in this
guide will be backward-compatible with earlier versions of RealPlayer. When
used with RealPlayer and SMIL 2.0, however, RealText and RealPix offer
significant improvements. For example, you can use SMIL 2.0 to turn a
RealText clip’s background transparent or semi-transparent. This is useful for
overlaying a video with subtitles.

For More Information: See “Creating a Transparent Window
Background” on page 113.

No Chapters on Advertising and Broadcasting

This guide no longer contains chapters on the Advertising Application and
broadcasting. Information about using SMIL with the Advertising
Application is available separately. For information about broadcasting media,
see RealProducer 10 User’s Guide and Helix Server Administration Guide.
24

CHAPTER 1: New Features
Authoring Kit Discontinued

The Authoring Kit, a zipped bundle of content production guides and
utilities, has been discontinued. Production guides are available as separate
downloads at the following Web page:

http://service.real.com/help/library/encoders.html

Note: The RealPix and Flash utilities formerly included in the
Authoring Kit are now available in the utilities folder of the
zipped HTML bundle of this production guide.
25

RealNetworks Production Guide
26

C H A P T E R
2

 Chapter 2: PRESENTATION PLANNING
A streaming presentation may be as basic as a single clip, or as
complex as dozens of clips and HTML pages coordinated to display
at different times. No matter how simple or complicated your
presentation, you’ll need to plan your media production so you can
work effectively and reach your target audience. This chapter
explains the basics of how to put streaming media presentations
together.

Tip: If you are not yet familiar with streaming media and
RealPlayer, see also Appendix A beginning on page 533.

For More Information: For a streamlined approach to media
production, download Introduction to Streaming Media from
http://service.real.com/help/library/encoders.html.

Step 1: Decide How to Deliver Clips
The first step in creating a streaming presentation is to consider the last step:
how will you deliver your clips to other people? How you plan to stream your
clips can greatly affect your media production.

Helix Server Streaming

Helix Server is the preferred host for RealPlayer presentations. Designed
specifically to stream multimedia over networks, Helix Server keeps multiple
clips synchronized and uses many advanced features to ensure that clips
stream smoothly, even under adverse network conditions. A Helix Server
administrator sets up and runs each Helix Server. If you will not be running
Helix Server yourself, check the following with your Helix Server
administrator:
27

RealNetworks Production Guide
1. What server version is available?

To deliver the clips described in this guide, you’ll need RealSystem Server
8 or Helix Server version 9 or higher. Make sure that your Helix Server can
deliver all the clips that you plan to develop.

2. How many streams can Helix Server deliver?

Each Helix Server has a maximum number of media streams it can send,
based on stream count or outgoing bandwidth. Make sure that the Helix
Server you plan to use has adequate capacity for your needs.

3. Are there any bandwidth constraints?

The Helix Server computer may lack the outgoing bandwidth to deliver a
lot of high-speed clips simultaneously. If you plan to develop high-
bandwidth presentations, confer with the Helix Server administrator
about bandwidth limitations.

4. Where will your clips reside?

Your clips typically reside on Helix Server, whereas your Web pages are on
a Web server. You’ll need to know the URLs for your clips on Helix Server
so that you can set up your Web page hyperlinks correctly.

5. Do any Helix Server features need to be set up?

The Helix Server administrator can set up many streaming and security
features, such as:

• live broadcasts

• pay-per-view content

• password authentication

Using Helix Server through an Internet Service Provider

If an Internet service provider (ISP) hosts your Web pages, contact the ISP
administrator to check out the Helix Server issues described above. Also find
out how much disk space you will have for streaming media. Many ISPs allot
you a certain amount of disk space on their servers, such as 5 or 10 Megabytes.
Although this is a generous amount for Web pages, it’s not much for
streaming media. A single video clip can easily take up that much space.
28

CHAPTER 2: Presentation Planning
Web Server Downloading

Although Web servers can deliver some streaming clips, they don’t have Helix
Server’s ability to synchronize clips and keep long presentations flowing
smoothly. When only a Web server is available, you can still deliver multimedia
presentations, but you will not be able to use all of the features that RealPlayer
offers.

For More Information: If you plan to deliver clips with a Web
server, read “Limitations on Web Server Playback” on page 527.

Local Playback

You can also create presentations that play back from a user’s local computer.
An example of this is a multimedia-enhanced book written with HTML and
linking to clips. Users download the files to their computers, playing back the
media clips with RealPlayer. In this case, you produce clips as described in this
guide, except that you don’t target specific network connection bandwidths.
In the HTML pages, URLs point to clips on the user’s computer instead of on
Helix Server.

For More Information: For more on local URLs in SMIL files, see
“Linking to Local Clips” on page 214. See also “Launching
RealPlayer with a Ram File” on page 508.

Step 2: Learn the RealPlayer 10 Interface
RealOne Player through RealPlayer 10 integrate streaming media with HTML
pages simply and effectively. Because previous versions of RealPlayer did not
natively display HTML pages, linked pages opened in the viewer’s default Web
browser, which split the presentation between separate applications. The latest
versions of RealPlayer close this divide, benefitting both the viewer, who does
not have to switch between applications to watch an integrated presentation,
and the presentation author, who can more easily coordinate streaming media
with Web pages.

A thorough understanding of how RealPlayer’s various panes let you
coordinate streaming media with HTML pages helps you to envision the types
of presentations that you can deliver. This section covers these interface
elements, and then discusses the types of production techniques that you can
use to tie your media and your HTML pages together. RealPlayer supports
29

RealNetworks Production Guide
several different production techniques, suitable for everyone from beginning
media authors to Web professionals.

The Three-Pane Environment

The following figure illustrates the RealPlayer environment, which is based on
the metaphor of “play/more/explore.” Here, the Media Playback pane plays
streamed or downloaded clips. The Related Info pane gives the viewer more
information about the presentation. The detachable Media Browser pane and
any secondary browsing windows let the viewer explore the World Wide Web.
This design gives you one pane for playing media, one pane for displaying
small HTML pages related to the media, and one or more windows for
showing large Web pages, such as your home page.

RealPlayer Three-Pane Environment with a Secondary Browsing Window

Media Playback Pane:
● Audio ● Animation ● SMIL
● Video ● RealPix ● RealText

Related Info Pane:
● HTML ● Javascript
● Other Web Technologies

Secondary
Browsing Window:
● HTML ● Javascript
● Other Web Technologies

Control Panel

Media Browser Pane:
● HTML ● Javascript
● Other Web Technologies

Resize Handle
30

CHAPTER 2: Presentation Planning
The Media Playback Pane

The media playback pane hosts media clips and includes buttons for play,
pause, rewind, volume control, and so on. Any streaming or downloaded
media playable in RealPlayer can display in this pane. This includes the core
clip types and markup languages described in “Step 3: Choose Clip Types and
Gather Tools” on page 39. In addition, RealPlayer can play many other media
types, including MPEG audio and video.

Media Playback Pane Sizing

The media playback pane automatically scales to the size of the playing media.
If no HTML page displays in the related info pane as media plays, the media
playback pane appears centered above the media browser pane as shown in the
following figure. The media browser pane’s resize handle allows the viewer to
adjust the relative heights of the top and bottom halves of the three-pane
environment.

Media Playback Pane Centered Above the Media Browser Pane
31

RealNetworks Production Guide
Tip: As explained in “Making Room for the Related Info Pane”
on page 376, you can use SMIL to display the media playback
pane at the left side of the RealPlayer window instead of in the
center.

Media Playback Pane Alone

If the viewer has detached or closed the media browser pane, the media
playback pane encloses the playing media, as illustrated in the next figure.
This gives the viewer access to media in a smaller pane that includes just the
necessary controls for adjusting media playback.

Media Playback Pane Without the Media Browser Pane

Media Playback and Related Info Panes

If a media presentation opens an HTML page in the related info pane, the
media playback pane automatically expands to display both the media and the
HTML page, as shown in the next figure.
32

CHAPTER 2: Presentation Planning
Media Playback Pane With the Related Info Pane

Visualizations for Audio-Only Clips

When playing audio-only clips, the viewer can display in the media playback
pane a visualization, such as an audio analyzer consisting of bars that rise and
fall in response to the strength of various audio frequencies.

A Visualization in the Media Playback Pane
33

RealNetworks Production Guide
Double-Size and Full-Screen Modes

Content authors and viewers can also play media at double-size or full-screen.
In full-screen mode, the media playback pane expands to fill the entire
computer screen. In this case, no HTML pages in the related info or media
browser panes display until the presentation ends, or the viewer exits full-
screen mode.

The Related Info Pane

The related info pane, which is also called the “context pane,” appears to the
right of the media playback pane. It’s designed to display small HTML pages
that supplement media clips. These pages might contain album cover art,
copyright information, advertisements, and so on. Although using the related
info pane is not required, displaying supplemental HTML pages in this pane
greatly enhances the viewing experience. The related info pane can display any
HTML page content supported by Microsoft Internet Explorer version 4 or
later.

Because the media playback and related info panes are separate, you can easily
open multiple HTML pages as a presentation plays, displaying each page at a
specific point in the media timeline. You can thereby update the related info
pane simply by opening a new HTML page. In contast, when you embed media
in a Web page, updating the page as the media plays can require complicated
scripting. RealPlayer thereby lets you focus on your media, and display any
number of supplemental HTML pages by using simple production
techniques.

Note: Because no divider marks the boundary between the
media playback and related info panes, it’s easy to blend the
panes by setting the same background colors. For the related
info pane, you set the background color in the HTML page.
Later sections in this guide explain how to set the media
playback pane’s background color through various methods.

Related Info Pane Sizing

The RealPlayer production techniques described in this guide let you set the
size of the related info pane. If you do not specify a size, the pane uses a
default width of 330 pixels, and a height the same as the media playing in the
media playback pane. If the page content is too large for the specified size, the
pane displays scroll bars the same as a standard browser window.
34

CHAPTER 2: Presentation Planning
The related info pane’s size is fixed for the presentation’s duration. As a clip or
SMIL presentation plays, the first URL that opens in the related info pane sets
the pane size. If a subsequent URL opens in the related info pane while the
same clip or presentation plays, any sizing information in that URL is ignored.
You can specify a new related info pane size, though, when starting a new clip
or SMIL presentation.

Tip: Because of the generally small size of the related info pane,
using frames in this pane is not recommended.

Media Clips Set the Minimum Height

You can set the related info pane to a height greater than the media, but not
smaller. If your media is 300 pixels high, for example, your related info pane
will be 300 pixels high even if you specify a shorter height, such as 200 pixels.
However, you can create a related info pane that is taller than your media, such
as 400 pixels. In this case, RealPlayer centers the media playback pane
vertically alongside the related info pane.

Media Browser Pane Can Override the Width

When the bottom media browser pane is attached to the top two panes, it may
increase the width of the related info pane. Suppose that you play a media clip
that is 200 pixels wide, and you specify a related info pane width of 300 pixels.
If the media browser pane is not attached, the width of the top two panes is
500 pixels. If a 600-pixel-wide media browser pane is attached, though,
RealPlayer adds 100 pixels to the related info pane width to increase the
overall width of the top panes to 600 pixels.

HTML Page Caching

RealPlayer caches the HTML pages that display in the related info pane for the
duration of a presentation. It deletes this cache when a new clip plays.
RealPlayer does not normally cache media clips that play in the media
playback pane. However, when you use SMIL, you can make RealPlayer cache
small clips, such as images, that display in the media playback pane.

For More Information: See “Caching Clips on RealPlayer” on
page 217 for more information about RealPlayer’s CHTTP
caching protocol for small media clips.
35

RealNetworks Production Guide
The Media Browser Pane

The media browser pane can attach to, or detach from, the media playback
and related info panes. When attached, it appears below the two other panes.
Detached, it appears as a stand-alone window that the viewer can resize and
close independently of the media playback and related info panes. Sending an
HTML page URL to a closed media browser pane reopens the pane, however.

Through the media browser pane, RealPlayer users can surf the Web, play
CDs, access their personal media libraries, transfer clips to portable players,
and so on. Presentation authors can also use this pane to display Web pages
associated with a streaming presentation. The pane supports any content
playable in Microsoft Internet Explorer version 4 or later, including Javascript.
You might use this pane to display your home page after a media presentation
plays, for example.

‘Now Playing’ List

In the left side of the media browser pane, viewers can display a clickable “Now
Playing” list. When the viewer plays a media clip or presentation, the clip or
presentation title displays in this list. Additionally, the viewer can build a clip
list by dragging media links from an HTML page displayed in the related info
or media browser pane.

RealPlayer ‘Now Playing’ List

Secondary Browsing Windows

Like most Web browsers, RealPlayer can display any number of additional
browsing windows, which are independent of the three-pane environment.
You can display Web pages associated with your presentation in secondary
browsing windows, for example. Displaying full Web pages in the main media
browser pane is preferable in most cases, though, because many viewers are
likely to have that pane already attached to the media playback and related
36

CHAPTER 2: Presentation Planning
info panes. Additionally, only the media browser pane includes the “Now
Playing” list.

Using Media Clips to Open HTML Pages

You can use three different techniques to open URLs in an HTML pane as a
media clip plays. These techniques allow you to create “media-driven”
presentations, in which supplemental information displays in the HTML
panes at a specific point in the media timeline, or in response to viewer
interaction with clips.

Appending HTML URLs to Clip URLs in a Ram File

You typically use a Ram file, which uses the extension .ram, to launch media
clips that play in RealPlayer. As the section “Passing Parameters Through a
Ram File” on page 513 explains, you can add to the Ram file the URLs for
HTML pages that open in the related info or media browser pane. This Ram
file method is easy to use, and is well-suited for simple presentations, such as a
single RealVideo clip that displays an HTML page as it plays.

Embedding HTML URLs Into a Clip

When you create a RealVideo or RealAudio clip with RealProducer, you can
write an events file that defines one or more URLs that open in a RealPlayer
HTML pane at certain points as the clip plays. You then use a utility that
embeds the events into the clip. Whenever you stream the clip, the encoded
URLs open automatically. Introduction to Streaming Media provides more
information about this production technique.

Using SMIL to Coordinate Clips and HTML Pages

To lay out and synchronize multiple media clips, you use Synchronized
Multimedia Integration Language (SMIL). A SMIL presentation always plays
in the media playback pane, but it can also open HTML pages in the other
panes. Using SMIL gives you more control over HTML display than using a
Ram file, or encoding URLs directly into clips. You can learn about SMIL
starting with Part IV of this guide. Chapter 15 covers SMIL’s hyperlinking
attributes.
37

RealNetworks Production Guide
Controlling a Presentation Through HTML Pages

Through HTML pages displaying in the related info pane or media browser
pane, you can control the media displaying in the media playback pane, as well
as open new HTML pages. These production techniques, which you can mix
with the media-based techniques described previously, allow you to create
“user-driven” presentations, in which clips and HTML pages display according
to viewer action within the HTML panes.

Linking One HTML Pane to the Other

The most basic way to link one HTML pane to another is through a simple
hypertext link in the form <a href>. You can open a new HTML page in the
media browser pane through a hypertext link in the related info pane by
adding a target=”_rpbrowser” attribute to the <a href> tag:

Any other target name will open the HTML page in a secondary window that
is detached from the basic three-window environment.

You should not attempt to open an HTML page in the related info pane with a
simple link in the media browser pane, however, because the related info pane
URL requires sizing information that you cannot pass in the link. However,
the Javascript/VBScript methods described below let you pass this
information.

Launching a Clip with an HTML Page Link

If you link to a Ram file with a simple <a href> link as described in “Launching
RealPlayer with a Ram File” on page 508, the clip or SMIL presentation listed
in the Ram file automatically plays in the media playback pane. You do not
need to use any additional window targeting attributes. To avoid a file
download dialog, though, you can use the Javascript or VBScript methods to
play clips when the viewer clicks certain links.

Using Javascript and VBScript Methods

RealPlayer supports several methods that work with both Javascript and
VBScript. Used in HTML pages displaying in the related info pane or media
browser pane, these methods give you more control than standard <a href>
links. They are intended for HTML pages displaying in the RealPlayer
environment, however, and not for HTML pages rendered by other browsers.
38

CHAPTER 2: Presentation Planning
The Javascript/VBScript methods are well-suited for creating Internet-based
audio and video jukeboxes, for example. Using these methods, you can create
interactive presentations that add clips to the “Now Playing” list, for example,
or play clips based on viewer interaction with forms or elements displayed in
the related info or media browser pane.

For More Information: For information about using Javascript
and VBScript methods with RealPlayer, see RealPlayer Scripting
Guide.

Step 3: Choose Clip Types and Gather Tools
RealPlayer gives you many possibilities for creating streaming media. Your
presentation may consist of a single clip, or several clips that play together. As
described in the preceding section, RealPlayer can also display HTML pages
while clips play. After you decide what types of clips you want to stream, you’ll
need to gather the production tools used to make the clips.

Audio and Video

RealAudio and RealVideo are the most popular streaming media formats. To
produce them, you run an encoding tool that takes audio or video input from
one of these sources:

• a live source, such as a video camera or microphone

• recorded media such as tape or CD

• a digitized file in a standard, uncompressed format

On Windows, WAV (.wav) and AVI (.avi) are the most popular audio and
video formats, respectively. On the Macintosh, QuickTime (.mov) and
AIFF (.aiff) are commonly used. Unix users often start with MPEG (.mpg,
.mpeg).

Tip: If RealPlayer can open a clip, you typically can stream that
type of clip with Helix Server, as long as the clip is not in a
format meant only for downloading. Only compressed clips
stream well, though. Uncompressed WAV is not a good
streaming format, for example, because it requires a lot of
bandwidth for even a small clip.
39

RealNetworks Production Guide
Audio and Video Production Tools

A streaming RealAudio or RealVideo clip results from gathering, editing, and
encoding audio or video input. To carry out the initial steps of gathering and
editing content, you’ll need the following:

• A video camera and a microphone

To capture live input, use any video camera and microphone that can be
attached to your computer. You will not need these devices, though, if
your audio or video source is already digitized.

• An audio/video capture card

To take input from a microphone or camera, your computer needs an
audio/video capture card. This card accepts the input and digitizes it into
a format you can edit. On Windows computers, you can use any video
capture card that supports Video for Windows.

• Audio and video editing software

These programs let you edit digitized audio and video files. When creating
clips that stream on demand, it’s best to edit and optimize the input
before encoding it. When broadcasting, you can convert audio and video
input into RealAudio or RealVideo clips directly from a capture card
without first creating a separate, digitized file.

Producing RealAudio and RealVideo does not require that you use specific
microphones, cameras, capture cards, or editing tools. Just ensure that your
editing tools can save files in formats that you can easily convert to streaming
formats with your encoding tool.

For More Information: Chapter 3 and Chapter 4 describe the
RealAudio and RealVideo formats in detail.

RealAudio and RealVideo Encoding Tools

Some editing programs can export digitized audio and video directly to
RealAudio or RealVideo. If your editing program cannot export clips, or you
don’t want to use this feature, you can use a RealNetworks tool to encode clips
from files in standard formats such as WAV, AVI, QuickTime, and MPEG.
RealProducer Basic is a free tool for encoding RealAudio and RealVideo clips.
RealProducer Plus is an enhanced version that offers more encoding features.
40

CHAPTER 2: Presentation Planning
RealProducer Creates Streaming Clips

For More Information: For more information about
RealProducer, see “Getting Production Tools” on page 535.
You can also learn more at http://www.realnetworks.com/
products/producer/index.html.

SMIL

When you want to combine two or more clips into a single presentation, you
use SMIL. Pronounced “smile,” SMIL is a simple markup language that tells
RealPlayer how to lay out and play your clips. You can use any word processor
or text editor to write SMIL. To learn SMIL, start with Chapter 8. For basic
information about SMIL syntax, see “Writing SMIL Files” on page 537.

Animation

With Macromedia Flash animation, you can build anything from streaming
cartoons to e-commerce applications. Using version 5 of the Flash application,
you can export an animation directly for streaming to RealPlayer, complete
with a RealAudio soundtrack. A streaming Flash clip uses the file extension
.swf. See Chapter 5 for details about producing Flash animation for
RealPlayer. Learn more about Flash from Macromedia’s Web site at:

http://www.macromedia.com/software/flash/

RealPlayer also plays animations in the Scalable Vector Graphics (SVG)
format. You can learn more about SVG at Adobe Corporation’s Web site:

http://www.adobe.com/svg/main.html

Streaming Audio
and Video Clips

Audio/Video
Editing Station

EncoderRaw Sound
& Video

Digitized Files
(.aiff, .avi, .mov,

.mpeg, .wav)
41

RealNetworks Production Guide
Images

Still images can display in the media playback pane, as well as the media
browser and related info panes. For images displayed in the media playback
pane, you can use any of the following formats:

• GIF87, GIF89, and animated GIF (.gif)

Both interlaced and noninterlaced GIFs will work, but noninterlaced GIFs
are recommended.

• JPEG (.jpg)

RealPlayer can display grayscale and RGB baseline JPEGs. Progressive
JPEGs are not supported.

• PNG (.png)

RealPlayer can display most PNG images, but it does not adhere to
gamma settings in PNG images.

Note: Several SMIL extensions let you adjust colors and
transparency within an image clip. For more information, see
“Modifying Clip Colors” on page 220.

Images in SMIL Presentations

To add images to streaming presentations as backgrounds or buttons, for
example, simply incorporate the images by using SMIL. This way, you can
specify exactly where images appear in relation to your clips. You can also use
SMIL to turn images into hyperlinks.

RealPix Markup

Streaming slideshows are based on the RealPix markup language. You can use
RealPix to assemble images into a slideshow that has eye-catching special
effects such as dissolves and zooms. Chapter 7 explains the RealPix markup
language.

Text

As the section “Adding Text to a SMIL Presentation” on page 225 explains,
there are three ways to add text to a SMIL presentation that displays in the
media playback pane. You can display a plain text file (.txt), add text directly to
your SMIL file, or display a RealText clip (.rt), which displays text at specific
times within a presentation. As well, you can display HTML text in the
42

CHAPTER 2: Presentation Planning
RealPlayer related info and media browser panes. Chapter 6 describes RealText
markup.

Autoupdate Feature

RealPlayer’s plug-in and autoupdate technologies ensure that your clips can
reach the widest audience possible. RealPlayer plug-ins function like Web
browser plug-ins. If RealPlayer doesn’t have a plug-in needed to play a
particular streaming clip, it downloads that plug-in. RealPlayer can even use
its autoupdate technology to upgrade itself to a new version when necessary.

The following figure illustrates the process for downloading a new plug-in. In
step 1, RealPlayer encounters an unknown clip type. Next, it contacts
RealNetworks to determine if a plug-in for that type of clip is available. The
RealNetworks server then downloads the new plug-in to RealPlayer, as shown
in step 3. In the final step, RealPlayer plays the clip using the new plug-in.

RealPlayer Downloads Plug-ins it Needs from the Internet
43

RealNetworks Production Guide
Compatibility with Earlier Versions of RealPlayer

Plug-in and autoupdate technologies were introduced with RealPlayer G2.
Earlier versions of RealPlayer cannot upgrade themselves, so they cannot play
all the clips described in this production guide. Generally, you don’t need to
be concerned with backward compatibility because most RealPlayer users
upgrade to the latest release. The following table summarizes which versions
of RealPlayer offer which features. RealPlayer 4.0, for example, plays only
RealAudio and RealVideo.

This table covers general clip compatibility, but other factors may prevent
backwards compatibility. For example, not all RealAudio and RealVideo
codecs are compatible with earlier versions of RealPlayer. If you are concerned
about backwards compatibility, make sure that you understand the specifics
of each clip type as described in the various chapters of this guide.

Protection of Copyrighted Content

Unlike a Web browser, RealPlayer does not store media clips in a disk cache, or
allow users to copy or download still images. This helps you keep copyrighted
material secure when you stream clips from Helix Server, though not from a
Web server. For managing copyrighted media, RealNetworks offers digital
rights management technology, which you can read about at the following
Web page:

http://www.realnetworks.com/products/drm/index.html

Supported Features in RealPlayer 10 and Earlier RealPlayer Versions

Feature 10 RealOne 8 7 G2 5 4 3 2 1

RealAudio streaming X X X X X X X X X X

RealVideo streaming X X X X X X X – – –

Flash 2.0 streaming X X X X X X – – – –

Flash 3.0 and 4.0 streaming X X X – – – – – – –

RealPix streaming X X X X X – – – – –

RealText streaming X X X X X – – – – –

SMIL 1.0 presentations X X X X X – – – – –

SMIL 2.0 presentations X X – – – – – – – –

Plug-ins for additional clip types X X X X X – – – – –

Autoupdate X X X X X – – – – –
44

CHAPTER 2: Presentation Planning
Step 4: Develop a Bandwidth Strategy
Any computer connected to a network has a connection bandwidth, which is a
maximum speed at which it can receive data. Web users with 28.8 Kbps
modems, for example, can view only those presentations that stream less than
28.8 Kb of data per second. Presentations that stream more data than that per
second may stall because the data cannot get over the modems fast enough to
keep the clips f lowing. These presentations will not cause problems for users
with faster connections, though.

Successfully targeting your audience’s connection bandwidth is crucial for
developing streaming media. Viewers don’t like to wait more than a few
seconds for playback to begin after they click a link. And if your clips sputter
because they use too much bandwidth, viewers are not likely to stay tuned.
Developing a bandwidth strategy helps ensure that clips play back quickly and
don’t stall. You can also devise ways to deliver good clips to users with slow
connections, and great clips to those with fast connections.

Presentation Data Must Fit RealPlayer’s Bandwidth

Buffering

For each streaming clip, RealPlayer keeps a “buffer” that acts as a data
reservoir. Data enters the buffer as it streams to RealPlayer, leaving the buffer
as RealPlayer plays the clip. The buffer helps ensure that lapses of available
bandwidth don’t stall the presentation. If network congestion halts the flow
of data for a few seconds, for example, RealPlayer keeps the clip playing with
the buffered data. Your goal is to minimize initial buffering and eliminate
rebuffering.

Stalled Presentation

56
Kbps
Modem

56
Kbps
Modem

112
Kbps
ISDN

Server

80 Kbps of Data

34 Kbps of Data

80 Kbps of Data
45

RealNetworks Production Guide
Initial Buffering (Preroll)

RealPlayer buffers a few seconds of data before a clip plays. Also called
“preroll,” initial buffering is required for every clip. Developing clips that use
an appropriate amount of bandwidth keeps preroll to an acceptable level. You
want preroll to be low—less than 15 seconds for each clip. RealAudio and
RealVideo encoding tools set a low preroll for you. With other clips, though,
how you create the clip determines its preroll.

Rebuffering

When clip data has stopped coming in and the clip buffer is empty, RealPlayer
has to halt clip playback to store data again, or “rebuffer.” Sometimes this is
unavoidable because the viewer’s available bandwidth drops for too long.
When developing a multiclip presentation, though, you need to consider
timelines carefully so that you don’t inadvertently cause rebuffering, which
can happen if too many clips fight for too little bandwidth.

Audience Bandwidth Targets

Your streaming presentations should never consume all of your audience’s
connection bandwidth. They must always leave bandwidth for network
overhead, error correction, resending lost data, and so on. Otherwise, they may
require frequent rebuffering. The following table recommends maximum
streaming speeds for common network connections. To reach 56 Kbps
modems, for example, a presentation should stream no more than 34 Kb of
data per second.

Maximum Streaming Rates

Target Audience Maximum Streaming Rate

14.4 Kbps modem 10 Kbps

28.8 Kbps modem 20 Kbps

56 Kbps modem 34 Kbps

64 Kbps ISDN 45 Kbps

112 Kbps dual ISDN 80 Kbps

Corporate LAN 150 Kbps

256 Kbps DSL/cable modem 225 Kbps

384 Kbps DSL/cable modem 350 Kbps
 (Table Page 1 of 2)
46

CHAPTER 2: Presentation Planning
For any other connection speed, calculate the maximum streaming speed as:

• Approximately 75 percent of the connection bandwidth for analog
connections such as dial-up modems.

–Or–

• Approximately 90 percent of the connection bandwidth for high-speed
digital connections such as DSL or cable modems.

Multiclip Presentations

When several clips are played together, their streaming speeds added together
should not exceed the connection maximum. For example, RealPix and
RealAudio clips streaming at 12 and 8 Kbps, respectively, can play in parallel
over 28.8 Kbps modems because together they stream at 20 Kbps. However,
they cannot play back together if they stream at 12 and 16 Kbps, respectively,
because the 28 Kbps total streaming speed leaves the modem no bandwidth
for overhead. Such a presentation would likely require frequent rebuffering.

Streaming at Less than the Maximum Speed

Your presentations do not have to stream at the maximum speeds listed in the
preceding table. In some cases, you may want your clips to stream at less than
the maximum:

• If your clip or presentation opens up large HTML pages in the RealPlayer
media browser or related info pane, you may need to leave some
bandwidth available so that RealPlayer can download the pages at a
reasonable rate. This is especially true when delivering a presentation over
a modem.

• You may need to leave enough bandwidth for the user to perform other
network activities. When streaming an Internet radio station, for example,
leave some bandwidth for the listener to view Web pages.

• Bandwidth is shared by everyone on a local area network (LAN). If the
LAN is heavily used, the 150 Kbps LAN target speed may slow down the

512 Kbps DSL/cable modem 450 Kbps

786 Kbps DSL/cable modem 700 Kbps

Maximum Streaming Rates (continued)

Target Audience Maximum Streaming Rate

 (Table Page 2 of 2)
47

RealNetworks Production Guide
LAN too much. For an intranet, the LAN manager should decide the
maximum streaming rate.

Clip Bandwidth Characteristics

To reach your target audiences with your clips, you need to understand your
clips’ bandwidth characteristics.

RealAudio and RealVideo

A RealAudio and RealVideo encoding tool can turn your source audio or video
file into a clip that streams to any target connection with little preroll. But if
the tool has to squeeze a file down too much to reach a low-bandwidth target,
clip quality may degrade. So although the clip will stream well, you might not
like the results. To ensure good-quality playback, keep your streaming
bandwidths in mind when creating source files, especially when you plan to
reach dial-up modem users.

For More Information: See “Understanding RealAudio” on page
59 and “Understanding RealVideo” on page 73.

Flash

Macromedia Flash streams well at low bandwidths, making it an attractive
alternative to video. Low streaming speed doesn’t affect Flash’s visual quality
as it can with video. At low bandwidths, though, you may not be able to
include as many items in your animated scenes as when streaming at high
bandwidths. After you develop a Flash clip for RealPlayer, you tune it to
stream at a specific bit rate. For more on this, see “Flash Bandwidth
Characteristics” on page 88.

RealText and SMIL

Because RealText and SMIL files are plain text, they use little bandwidth. You
generally don’t need to be concerned about how they affect a presentation’s
bandwidth consumption.

RealPix (Slideshows)

RealPix bandwidth use depends on the image sizes and how soon each image
must appear in the clip’s timeline. At higher bandwidths, you can use larger
images and display them at shorter intervals. By varying image size and the
RealPix timeline, you gain a lot of control over bandwidth use. When you
48

CHAPTER 2: Presentation Planning
write RealPix markup by hand, you need to balance bandwidth, image sizes,
and the slideshow timeline.

For More Information: See “Managing RealPix Bandwidth” on
page 152.

Images in SMIL Presentations

JPEG, GIF, or PNG images in a SMIL presentation stream at 12 Kbps. See
“Setting a Clip’s Streaming Speed” on page 208 for instructions on changing
this streaming bit rate.

Reaching Multiple Audiences

To provide good content for users with slower connections, and great content
for those with faster connections, you can use two methods, combining them
if needed:

• Create a single RealAudio or RealVideo clip that targets different audience
bandwidths by using SureStream technology.

• Create separate clips for each bandwidth target, and let RealPlayer choose
which set of clips to play through SMIL.

Either way, you add to your Web page just one link for all visitors. You don’t
need separate links for dial-up modems and DSL connections, for example.

SureStream RealAudio and RealVideo

Using SureStream technology, you can encode a RealAudio or RealVideo clip
for multiple bandwidths. For example, you can encode a single RealAudio
music clip for 28.8 Kbps modems, 56 Kbps modems, 112 Kbps dual ISDN, 256
Kbps DSL, and so on. The clip’s playback quality improves with each faster
speed. When a viewer clicks a link to a SureStream clip, RealPlayer and Helix
Server determine which stream to use based on the available bandwidth, as
shown in the following illustration.
49

RealNetworks Production Guide
SureStream Clip Encoded for Multiple Bandwidths

Helix Server and RealPlayer can even adjust this choice to compensate for
network conditions. If a fast connection becomes bogged down because of
high network traffic, Helix Server switches to a lower-bandwidth stream to
prevent the presentation from stalling. When the congestion clears, Helix
Server switches back to the higher-bandwidth stream. RealPlayer doesn’t need
to rebuffer data during this shifting.

Switching Bandwidths During Network Congestion

Switching Between Multiple Clips with SMIL

Only RealAudio and RealVideo clips can stream at multiple bandwidths. You
can create multiple versions of other clips, though, each for a different
bandwidth. RealPlayer then chooses which clip to play based on a SMIL
bandwidth parameter. The following illustration shows a SMIL file that lists
50

CHAPTER 2: Presentation Planning
separate high-bandwidth and low-bandwidth RealPix clips. Each RealPlayer
evaluates the SMIL file and chooses the RealPix clip appropriate for its
connection speed. Both presentations use the same SureStream RealAudio
clip, though, which has been encoded internally for multiple bandwidths.

Bandwidth Choices through a SureStream Clip and SMIL

When you use SMIL for bandwidth choices, Helix Server cannot downshift to
a lower-bandwidth clip group the way it can downshift to a slower SureStream
stream. Helix Server employs other techniques, though, to compensate for
network congestion. Its stream thinning capabilities enable it to drop low-
priority data to decrease the presentation bandwidth temporarily. When the
network congestion clears, Helix Server continues to stream all the
presentation data.

For More Information: “Switching Between Bandwidth Choices”
on page 448 explains how to use SMIL to designate different
bandwidth groups.

Step 5: Organize the Presentation Timeline
Every streaming media clip has a timeline. A RealAudio clip may play for five
minutes, for example, giving it a five-minute timeline. When clips are
streamed together, you have a presentation timeline as well. Before producing
clips, plan the presentation timeline. Among other things, the timeline can
determine the order in which you produce clips. A well-conceived timeline also
helps ensure that clips do not overload a connection’s bandwidth and cause
rebuffering.
51

RealNetworks Production Guide
Timeline Considerations

When you assemble a streaming media presentation, you can manipulate
various aspects of clip timelines.

Clips with Internal Timelines

Audio, video, and animation have internal timelines. In a 10-minute video, for
instance, each frame corresponds to a specific point in a 10-minute timeline.
Each second of audio meshes with each second of the image throughout the
clip’s overall timeline. Your video, audio, or animation software is your main
tool for manipulating the clip’s timeline, which is woven into the fabric of the
clip.

Clips with Variable Timelines

With RealPix or RealText, you use the markup language to control when each
image or text block appears, and how long it lasts. When combining clips, it’s
typically easier to produce audio, video, or animation first. Then set the
RealPix and RealText timelines to coordinate with those clips.

SMIL Timing Commands

A SMIL file can include its own timing elements. Timing a presentation with
SMIL can be as simple as having one clip start as soon as another one stops.
But you can also use commands to delay playback for 10 seconds, for example,
or to have a clip start playing 30 seconds into its internal timeline. SMIL’s
timing commands are optional, but they give you the f lexibility you may need
for some presentations.

For More Information: For more on SMIL timing, see Chapter
13.

Timelines for Multiclip Presentations

For presentations that include multiple clips, consider how to group clips
without overloading an audience’s connection bandwidth. The following
illustration shows poor timeline planning. At various points, a video and a
slideshow clip playing together exceed the connection’s maximum streaming
speed, which is represented below by the dashed line. Illustrated by the solid
line, bandwidth use peaks again when the second video clip begins to play
before the first video clip finishes. This presentation requires a high preroll for
clips and would likely result in rebuffering at peak points.
52

CHAPTER 2: Presentation Planning
Poor Bandwidth Use in a Multiclip Presentation

The next illustration shows better timeline planning and bandwidth
management. The presentation starts with a low-bandwidth text clip that
does not interfere with the streaming of the images in the image slideshow. A
video clip starts after the slideshow has streamed all of its images and does not
need any more bandwidth. The second video clip starts after the first video
clip has ended, so the two clips do not compete for bandwidth.

Improved Bandwidth Use in a Multiclip Presentation

Image Slideshow Video

Video Text Timeline

Streaming
Speed Target

Actual
Bandwidth Use

Image Slideshow Video

Text Video Timeline

Streaming
Speed Target

Actual
Bandwidth Use
53

RealNetworks Production Guide
Timeline Management

When developing a streaming presentation, keep the following in mind:

• Consider the presentation timeline carefully to eliminate bandwidth
bottlenecks. These typically occur when two or more high-bandwidth
clips play simultaneously. You may need to omit high-bandwidth pairings,
combining high-bandwidth clips with low-bandwidth clips instead.

• Stagger the start times for clips. Every clip requires a certain amount of
preroll before RealPlayer can play it. Your presentation will flow more
smoothly if Helix Server does not need to send more than one clip’s
preroll at a time.

• Start presentations with low-bandwidth clips. For example, use RealText
to display credits. Or begin with a highly compressed RealAudio narration
before bringing in any other clips. Helix Server can take advantage of the
extra bandwidth to begin streaming higher-bandwidth data to RealPlayer
“behind the scenes.”

• Test your presentations in “real world” circumstances, replicating your
audience’s bandwidth conditions. Clips may play back OK from your
desktop computer but bog down when streamed over a modem.

• If you become an advanced SMIL author, you can use prefetching, a
powerful bandwidth management feature that lets you stream portions of
large clips, or all data for small clips, before the clips play. Chapter 19
explains prefetching.

Step 6: Get Started With Production
When you’ve decided how you’ll stream clips, chosen clip types and tools,
developed a bandwidth strategy, and planned a timeline, you’re ready to start
creating streaming presentations. The following sections point you to the
chapters you should read to carry out certain jobs. Also, be sure to familiarize
yourself with this guide’s appendixes. Appendix B, for example, points you to
specific information about performing specific tasks. The markup appendixes
summarize all tags, helping you to locate features quickly.

Tip: This guide does not explain how to use any specific tools,
such as RealProducer or Macromedia Flash. Be sure to have the
documentation for your production tools handy as you
develop your clips.
54

CHAPTER 2: Presentation Planning
I plan to stream just audio and video clips.

Read Chapter 3 and Chapter 4 to learn about RealAudio and RealVideo,
respectively, and to pick up general audio and video production tips. Refer to
your RealProducer 10 User’s Guide for instructions on running RealProducer to
encode the streaming clips. Chapter 21 explains how to write a Ram file that
links your clips to a Web page.

I want to open HTML pages with my audio and video clips.

The section “Passing Parameters Through a Ram File” on page 513 explains
how to open HTML page through simple parameters listed in a Ram file. If
you need more functionality, you can write a SMIL file to open any number of
Web pages at any time. Chapter 8 explains the basics of SMIL, and Chapter 15
covers SMIL’s extensive hyperlinking capabilities.

I want to embed my audio and video clips in a Web page.

Chapter 20 explains embedding markup. To extend the basic embedded
functionality using Javascript or VBScript, see RealPlayer Scripting Guide.

I want to stream Macromedia Flash animation.

Chapter 5 provides tips for making Flash animation stream well. Consult your
Flash documentation for instructions about using the Flash application.

I want to create a slideshow.

Chapter 7 explains the RealPix markup for streaming still-image slideshows. If
you want to combine your slideshow with another clip, such as an audio
soundtrack, you’ll need to use SMIL.

I want to learn about SMIL.

Start with Chapter 8 to learn the basics of SMIL. Part V, beginning on page
235, and Part VI, beginning on page 311, explain the basics of SMIL layout and
timing. Part VII, beginning on page 391, takes you through the more advanced
SMIL features.
55

RealNetworks Production Guide
56

P A R T
II

Par t II: PRODUCING CLIPS
Individual clips are the building blocks of a streaming media
presentation. In this section, Chapter 3 and Chapter 4 take on
RealAudio and RealVideo production, respectively. Read
Chapter 5 to learn how to stream Macromedia’s Flash
animation.

C H A P T E R
3

 Chapter 3: AUDIO PRODUCTION
RealNetworks pioneered streaming audio with RealAudio, the first
streaming media product for the Internet. Since its debut in 1995,
RealAudio has become the standard for network audio. This chapter
gives pointers on how to prepare and encode your sound files for
streaming.

For More Information: For specific instructions about encoding
RealAudio clips using RealProducer, refer to RealProducer 10
User’s Guide, available at http://service.real.com/help/
library/encoders.html. You can download RealProducer from
http://www.realnetworks.com/products/producer10/
index.html.

Understanding RealAudio
Because RealAudio clips are compressed, you typically start with a sound file
in a digitized, uncompressed format such as WAV or AIFF. Using a RealAudio
encoding tool, you create a RealAudio clip from the source file. RealAudio
clips typically use the file extension .rm, although clips may also end with
.rmvb (variable bit-rate clip) or .ra (audio file created by RealPlayer). This
section explains how RealAudio encodes an audio file for streaming. This
knowledge will help you produce high-quality streaming clips.

Bandwidth and Audio Quality

One way that RealAudio squeezes an audio file’s size down is by throwing out
nonessential data. This makes it a lossy compression format. RealAudio
doesn’t delete data indiscriminately, though. It first jettisons portions you
cannot hear, such as very high and very low frequencies. Next, it removes as
much data as needed while keeping certain frequencies intact. Voice encoding
59

RealNetworks Production Guide
favors frequencies in the normal human speaking range. Music encoding
retains a broader frequency range.

Although RealAudio is savvy about what audio data it throws out, be aware
that the lower the connection speed, the more data gets ejected, and the
cruder the sound quality becomes. At low bandwidths, you get roughly the
quality of an AM radio broadcast. With faster connections, you can encode
music with FM-quality sound. And at the high speeds of DSL, cable modems,
and LANs, RealAudio sound quality rivals that of CD playback. When creating
RealAudio clips for low bandwidths, it’s important to start with high-quality
input, as described in “Capturing Audio” on page 67, to attain good sound
quality.

RealAudio Bandwidth Characteristics

You create a RealAudio clip by using one or more RealAudio codecs. A codec is
a coder/decoder. It tells an encoding tool how to turn audio source files into
RealAudio clips. On the receiving end, RealPlayer uses codecs to expand clips
into audio data the computer can play. RealAudio employs a series of codecs,
each of which creates an audio stream for a precise bandwidth. One codec
compresses mono music for a 28.8 Kbps modem. Another one compresses
stereo music for that same modem speed. This set of codecs is different from
the set used to compress music for, say, DSL and cable modem connections.

A RealAudio clip consumes bandwidth at a flat rate determined by the codec
used to encode the clip. A RealAudio clip encoded with a 20 Kbps codec, for
example, steadily consumes 20 Kbps of bandwidth as it plays. The following
table lists the standard bit rates for RealAudio clips encoded for specific target
audiences by RealProducer. Encoding a voice-only audio file for a 28.8 Kbps
modem, for example, creates a 16 Kbps streaming clip. With mono music
input, though, you get a 20 Kbps clip.

RealAudio Standard Bit Rates

Target Audience Voice Only
Voice and
Music

Mono
Music

Stereo
Music

28.8 Kbps modem
16 Kbps

20 Kbps 20 Kbps 20 Kbps

56 Kbps modem 32 Kbps 32 Kbps 32 Kbps

64 Kbps single ISDN 32 Kbps 44 Kbps 44 Kbps 44 Kbps
 (Table Page 1 of 2)
60

CHAPTER 3: Audio Production
In terms of bandwidth use, RealAudio is the most inf lexible media type. The
RealAudio codecs set streaming bit rates in a stairstep model: 20 Kbps, 36
Kbps, 44 Kbps, and so on, with no inbetween choices. Because RealAudio clips
always stream at specific bit rates, consider their bandwidth needs first when
you use them in multiclip presentations. Then create your other clips to
stream within the bandwidth that’s left.

Note: With SureStream technology, a single RealAudio clip can
stream at many different speed. For the basics of SureStream,
see “SureStream RealAudio and RealVideo” on page 49.

RealAudio Codecs

This section discusses the RealAudio codecs used by RealProducer. The codecs
are listed in separate tables for voice, mono music, and various types of stereo
and multichannel music. Voice codecs focus on the standard frequency range
of the human voice. Music codecs have broader frequency responses to capture
more high and low frequencies.

The tables list each codec’s optimum sampling rate. Using the codec’s
optimum rate or a higher rate in your audio source file ensures that the audio
stays synchronized with other media in the presentation. If necessary,
RealProducer resamples audio to the codec’s preferred rate without causing
pitch shifting. When in doubt about the sampling rate to use, choose a CD-
quality sampling rate of 44.1 kHz.

For More Information: For more information about the audio
types such as stereo surround, refer to RealProducer 10 User’s
Guide.

112 Kbps dual ISDN

64 Kbps

64 Kbps

64 Kbps

64 Kbps

Corporate LAN

96 Kbps

132 Kbps

256 Kbps DSL/cable modem 176 Kbps

384 Kbps DSL/cable modem
96 Kbps

264 Kbps

512 Kbps DSL/cable modem 352 Kbps

RealAudio Standard Bit Rates (continued)

Target Audience Voice Only
Voice and
Music

Mono
Music

Stereo
Music

 (Table Page 2 of 2)
61

RealNetworks Production Guide
Voice Codecs

Voice codecs are for voice-only clips. The lowest-speed voice codec normally
used to encode a RealAudio clip streams data at 16 Kbps. The lower-speed
codecs (5, 6.5, and 8.5 Kbps) are used as SureStream duress streams that
RealPlayer downshifts to if the connection bandwidth drops. They’re also used
to encode soundtracks for low-bandwidth RealVideo clips.

Mono Music Codecs

As with the voice codecs, the lowest-speed mono music codec normally used
with RealAudio streams data at 16 Kbps. The lower-speed codecs (6, 8, and 11
Kbps) are used as duress streams in SureStream clips, and to encode
soundtracks for low-bandwidth RealVideo clips. When there are two versions
of a codec, RealProducer uses the higher-response version by default.

RealAudio Voice Codecs

RealAudio Codec Sampling Rate

5 Kbps Voice 8 kHz

6.5 Kbps Voice 8 kHz

8.5 Kbps Voice 8 kHz

16 Kbps Voice 16 kHz

32 Kbps Voice 22.05 kHz

64 Kbps Voice 44.1 kHz

RealAudio Mono Music Codecs

RealAudio Codec Sampling Rate

6 Kbps Music - RealAudio 8 kHz

8 Kbps Music - RealAudio 8 kHz

11 Kbps Music - RealAudio 11.025 kHz

16 Kbps Music - RealAudio 22.05 kHz

20 Kbps Music - RealAudio 22.05 kHz

20 Kbps Music High Response - RealAudio 44.1 kHz

32 Kbps Music - RealAudio 44.1 kHz

32 Kbps Music High Response - RealAudio 44.1 kHz

44 Kbps Music - RealAudio 44.1 kHz

64 Kbps Music - RealAudio 44.1 kHz
62

CHAPTER 3: Audio Production
Stereo Music Codecs

Use stereo music codecs for encoding traditional, two-channel stereo music.
RealProducer also uses these codecs when you encode voice-with-music clips.
You can encode many different bandwidths of stereo music, using three
different stereo codecs:

• The oldest stereo music codecs produce lower quality sound than newer
codecs, but are compatible with RealPlayer G2 and later.

• Stereo music codecs listed as “RealAudio” in the following table provide
high quality stereo sound compatible with RealPlayer 8 and later.

• The codecs listed as “RealAudio 10” in the following table are based on
Cook and AAC technology. They are compatible with RealOne Player (a
codec autoupdate is required) and later, including RealPlayer 10.

The following stereo music codecs are available.

Stereo Music Codecs

Codec Sampling Rate

12 Kbps Stereo Music - RealAudio 11.025 kHz

16 Kbps Stereo Music - RealAudio 22.05 kHz

20 Kbps Stereo Music 11.025 kHz

20 Kbps Stereo Music - RealAudio 22.05 kHz

20 Kbps Stereo Music High Response - RealAudio 22.05 kHz

32 Kbps Stereo Music 22.05 kHz

32 Kbps Stereo Music - RealAudio 22.05 kHz

32 Kbps Stereo Music High Response - RealAudio 44.1 kHz

44 Kbps Stereo Music 22.05 kHz

44 Kbps Stereo Music - RealAudio 44.1 kHz

44 Kbps Stereo Music High Response - RealAudio 44.1 kHz

64 Kbps Stereo Music 44.1 kHz

64 Kbps Stereo Music - RealAudio 44.1 kHz

64 Kbps Stereo Music - RealAudio 10 44.1 kHz

96 Kbps Stereo Music 44.1 kHz

96 Kbps Stereo Music - RealAudio 44.1 kHz

96 Kbps Stereo Music - RealAudio 10 44.1 kHz

128 Kbps Stereo Music - RealAudio 10 44.1 kHz
 (Table Page 1 of 2)
63

RealNetworks Production Guide
Stereo Surround Codecs

The RealAudio Stereo Surround codecs preserve the matrixed multi-channel
surround audio in conventional “surround sound” audio. Stereo surround
audio consists of multiple channels that are mixed into the two conventional
left and right stereo channels. To play RealAudio clips encoded with these
codecs, your viewers need RealOne Player or later, and an A/V receiver
equipped with stereo surround decoding.

Discrete Multichannel Audio Codecs

The RealAudio multichannel codecs preserve the discrete, multiple channels
in the audio source. Use them if you know that the source audio includes
multichannel sound, and your intended listeners have home theater systems
or other equipment able play all of the channels. The following codecs are
available for high-bandwidth, multichannel recordings. All multichannel

160 Kbps Stereo Music - RealAudio 10 44.1 kHz

192 Kbps Stereo Music - RealAudio 10 44.1 kHz

256 Kbps Stereo Music - RealAudio 10 44.1 kHz

320 Kbps Stereo Music - RealAudio 10 44.1 kHz

Stereo Music Codecs (continued)

Codec Sampling Rate

 (Table Page 2 of 2)

Stereo Surround Audio Codecs

Codec Sampling Rate

44 Kbps Stereo Surround Audio - RealAudio 22.05 kHz

64 Kbps Stereo Surround Audio - RealAudio 44.1 kHz

96 Kbps Stereo Surround Audio - RealAudio 44.1 kHz

128 Kbps Stereo Surround - RealAudio 10 44.1 kHz

160 Kbps Stereo Surround - RealAudio 10 44.1 kHz

192 Kbps Stereo Surround - RealAudio 10 44.1 kHz

256 Kbps Stereo Surround - RealAudio 10 44.1 kHz

320 Kbps Stereo Surround - RealAudio 10 44.1 kHz
64

CHAPTER 3: Audio Production
codecs are compatible with RealOne Player (a codec autoupdate is required)
and later, including RealPlayer 10.

Lossless Audio

The lossless RealAudio codec faithfully reproduces the full dynamic frequency
of the input audio file while compressing the output. The encoded clip, which
is saved in the variable bit rate format (.rmvb), is typically around half the size
of the input file, though the compression rate varies with different types of
input. The RealAudio lossless codec is compatible with RealOne Player (a
codec autoupdate is required) through RealPlayer 10.

Steps for Streaming Audio

To produce a great streaming audio clip, you need to use great source material,
high-quality equipment, and good production practices. This section surveys
the steps involved in streaming an audio clip.

Multichannel Audio Codecs

Codec Sampling Rate

96 Kbps 5.1 Multichannel - RealAudio 10 22.05 kHz

132 Kbps 5.1 Multichannel - RealAudio 10 44.1 kHz

184 Kbps 5.1 Multichannel - RealAudio 10 44.1 kHz

268 Kbps 5.1 Multichannel - RealAudio 10 44.1 kHz

RealAudio Lossless Codec

Codec Sampling Rate

RealAudio Lossless Audio 44.1 kHz
65

RealNetworks Production Guide
Creating a Streaming Audio Clip

➤ To create a streaming audio clip, follow these basic steps:

1. Capture audio source.

You start audio production by capturing audio from a source, such as a
person speaking into a microphone. You might also start with an audio
source file from a compact disc, for example.

For More Information: “Capturing Audio” on page 67 provides
guidelines for capturing audio.

2. Optimize the audio source.

With the audio file digitized in a common file format such as WAV or
AIFF, you can use a sound editor to optimize the audio file for encoding
as a streaming clip. When broadcasting live, however, you encode audio
input directly from the source, optimizing the audio during capture.

Digitized
Raw Audio

(.aiff, .mov, .wav)

Captured
Audio Encoder

Encoded
Audio Clip

Player
Streamed

Audio

Audio
Editing
Station

Optimized
Audio
66

CHAPTER 3: Audio Production
For More Information: See “Optimizing Audio” on page 69 for
tips on editing sound.

3. Encode the streaming audio clip.

With your digitized file optimized or your live broadcast ready to go, you
encode your source file in a streaming format, such as RealAudio. When
you do this, you choose one or several streaming bandwidths based on
your target audiences.

4. Deliver the streaming audio clip.

When your presentation is ready to go, you make your audio clip or
broadcast available through your Web site. To combine an audio clip with
another streaming clip, such as a RealPix clip, you write a SMIL file.

For More Information: Chapter 8 explains SMIL. See Chapter 21
for instructions on linking your Web page to a clip or a SMIL
file.

Capturing Audio
A streaming clip reflects the quality of its audio source. Any quality problems
within the source will affect the streaming clip as well. Because you cannot
edit a broadcast, live Webcasting introduces several issues beyond those
involved with delivering on-demand clips. This section will help you capture
high-quality audio source files, or set up your sound equipment to deliver
good broadcasts.

Source Media

If you plan to stream existing material, start with the best source possible. Use
the cleanest recording with the least amount of unwanted noise. Compact
discs (CDs) and digital audio tapes (DATs) are good source media, although
well-recorded analog sources such as records, reel-to-reel tapes, and chrome
(type II) cassettes can sound just as good. Try to avoid consumer-grade
recording media such as Type I cassettes and VHS tapes.

Recording Equipment

Every piece of equipment in the audio chain—microphone, mixer, sound card,
and so on—affects sound quality. If you intend to provide professional-quality
67

RealNetworks Production Guide
audio content, invest in professional-quality audio equipment and software.
Lesser equipment can add hiss and distortion, degrading sound clarity.

Shielded Cables

It is important to use high-quality, shielded cables. Using unshielded cables
increases the likelihood of introducing line noise and radio frequency
interference into recordings. Keep audio cables physically separated from
power cords to minimize the introduction of noise. Also be sure to ground all
equipment properly.

Input Levels

Setting correct input levels is crucial. All audio equipment has a signal-to-
noise ratio, the ratio between the loudest possible sound the equipment can
reproduce without distortion and its inherent “noise floor.” Also called
“clipping,” distortion of this type is audible as a high-frequency crackling
noise.

To get the best signal-to-noise ratio, set the input level on each audio device in
the signal chain so that it uses its full range of available amplitude without
distortion during the program’s loudest sections. The signal chain typically
includes a microphone, a mixing desk, a compressor, and a sound card. For
each piece of equipment, set levels as close as possible to 0 decibels without
going over that level.

Check for signal distortion at each point in the signal chain. Perform several
test runs, and make sure that there are no peaks above maximum amplitude.
Adjust the levels on your sound card mixer so that the input approaches but
does not exceed the maximum. Be conservative, though. Levels might
suddenly increase if, for instance, an interviewee suddenly speaks loudly or a
crowd at a sports event roars.

Volume Levels for Live Broadcasts

When broadcasting live audio streams, it is useful to have a dynamics
compressor for gain compression (not data compression). This piece of audio
equipment automatically adjusts the volume level. By providing a consistent
volume level, it allows you to “set and forget” the input levels to RealProducer.
68

CHAPTER 3: Audio Production
Sampling Rates

Try to capture sound with a sampling width of 16 bits. RealAudio codecs have
different sampling rates that produce the best sound, however. If your sound
card allows it, capture audio content at the optimum sampling rate for the
codec you intend to use. The RealAudio encoder will convert the file to the
optimum rate if necessary, but this is recommended only for static files. For
live broadcasts, use a sound card that supports the optimum rate. This avoids
the overhead entailed in converting the rate while encoding sound in real
time.

For More Information: “RealAudio Codecs” on page 61 lists the
optimum sampling rates for each codec.

Tip: You do not need to capture stereo sound if you plan to use
a mono codec. However, many sound cards simply discard the
right input channel in mono mode. If you have a mixing desk,
pan all inputs to the center so that nothing is lost during the
conversion to mono.

Optimizing Audio
If you are not broadcasting audio live, you work with digitized audio source
files in supported formats such as WAV or AIFF. You then edit the audio files
to optimize them. To do this, you need to be familiar with the features your
editing program offers. This section gives you some optimization tips you can
try with your editing software.

Tip: Always keep copies of your audio source files. You cannot
convert RealAudio clips back to their original source formats.

DC Offset

DC offset is low-frequency, inaudible noise that results from equipment
grounding problems. If you don’t remove it, it can skew the results of
subsequent sound editing. Use your sound editor’s DC Offset function
immediately after recording a digital audio file.

Tip: If your editing program has this option, remove DC offset
during recording. This eliminates an editing step.
69

RealNetworks Production Guide
Normalization

Set sensible input levels when recording, and then use normalization to
maximize the levels after recording. Your streaming files sound best when
your digitized source has the highest possible gain without clipping. Digital
audio files that do not use their full amplitude range produce low-quality
streaming clips. If the amplitude range is too low, use your sound editor to
adjust the range and increase the amplitude.

Tip: Most sound editors have a Normalize function that
maximizes levels automatically. Because some systems have
trouble with files normalized to 100 percent, normalize to 95
percent of maximum, or to -0.5dB.

Dynamics Compression

Normalization maximizes the volume level of the audio file’s loudest sections.
Consequently, quiet sections may not encode as well. Dynamics compression
evens out input levels by attenuating (turning down) the input when it rises
above a specified threshold. Check your audio software for a Compression or
Dynamics feature. You can control attenuation by specifying a compression
ratio. This turns down the loudest sections, and you can readjust input levels
accordingly.

Tip: For multipurpose dynamics compression, set the
threshold to -10dB, the ratio to 4:1, and the attack and release
times to 100ms. Adjust the input level to get approximately
3dB of compression and an output level of about 0dB.

Equalization

Equalization (EQ) changes the tone of the incoming signal by “boosting”
(turning up) or “cutting” (turning down) certain frequencies. Using EQ, you
can emphasize certain frequencies and cut others that contain noise or
unwanted sound. EQ can compensate for RealAudio codecs that do not have
flat frequency responses (that is, codecs for which certain frequencies are not
as loud after encoding). You can therefore use EQ to make a RealAudio clip
sound as close as possible to the source recording.

Tip: For voice-only content, you can make the file more
intelligible by cutting frequencies below 100 Hz and carefully
boosting frequencies in the 1 to 4 kHz range.
70

CHAPTER 3: Audio Production
71

RealNetworks Production Guide
72

C H A P T E R
4

 Chapter 4: VIDEO PRODUCTION
RealNetworks introduced RealVideo with RealPlayer 4, making
streaming video available over the Internet. This chapter covers
RealVideo production techniques, providing tips for capturing high-
quality video, working with digitized video source f iles, and using
RealProducer to encode your clips.

For More Information: For specific instructions about encoding
RealVideo clips using RealProducer, refer to RealProducer 10
User’s Guide, available at http://service.real.com/help/
library/encoders.html. You can download RealProducer from
http://www.realnetworks.com/products/producer10/
index.html.

Understanding RealVideo
A video consists of two parts: the visual track and the soundtrack. In a
RealVideo clip, the soundtrack is encoded with RealAudio codecs, and the
visual track is encoded with a RealVideo codec. Both tracks are packaged in a
RealVideo clip that, like a RealAudio clip, uses the file extension .rm. This
section explains how RealVideo encodes a source video for streaming. This
information will help you to produce high-quality streaming clips.

Tip: Keep in mind that everything discussed about RealAudio
clips in Chapter 3 also applies to the soundtracks in RealVideo
clips.

For More Information: RealVideo clips may also use the file
extension .rmvb, which denotes variable bit rate (VBR) clips.
For more on VBR, refer to RealProducer 10 User’s Guide.
73

RealNetworks Production Guide
RealVideo Bandwidth Characteristics

Because RealVideo uses RealAudio to encode a video’s soundtrack, a chunk of
the clip’s bandwidth first goes toward the audio. The visual track is then
squeezed into the bandwidth that’s left. For 56 Kbps modems, for example,
RealVideo clips stream at 34 Kbps, leaving 22 Kbps of modem bandwidth for
overhead. How much bandwidth the visual track gets depends on how the
audio is encoded. With an 8 Kbps RealAudio voice codec for the soundtrack,
the visual track gets 26 Kbps. With a 16 Kbps music codec, though, the visual
track gets just 18 Kbps.

Possible Audio and Visual Tracks in a 56 Kbps RealVideo Clip

At low bandwidths, how you encode the soundtrack can affect how the visual
track looks. RealAudio music codecs typically consume more bandwidth than
do voice codecs. Music’s greater frequency range requires more data than does
speech, so a music soundtrack consumes more bandwidth than a spoken one.
A video with an audio narration might therefore look better than one
accompanied by music, as there would be more bandwidth available for the
visual track.

At higher streaming speeds, the soundtrack uses proportionally less of the
clip’s bandwidth, so differences in soundtrack encoding affect visual quality
less. At speeds above 100 Kbps, you get high-quality sound that uses no more
than a quarter of the clip’s streaming bandwidth. The following table lists the
standard target audiences for RealVideo streams, giving the clip streaming

18 K Visual

22 K Overhead

16 K Audio

26 K Visual

22 K Overhead

8 K Audio

56 Kbps
74

CHAPTER 4: Video Production
speeds and the RealAudio codecs used for the soundtracks, broken out by
audio type.

Note: With SureStream technology, a single RealVideo clip can
stream at many different speeds. For the basics of SureStream,
see “SureStream RealAudio and RealVideo” on page 49.

RealVideo Frame Rates

Like RealAudio, RealVideo is “lossy,” meaning that it throws out nonessential
video data when encoding a clip. One way that RealVideo squeezes down clip
sizes is by reducing the video’s frame rate. The higher the frame rate, the
smoother the motion:

• The standard frame rate for full-motion video is 24 to 30 frames per
second (fps). At this speed, the human eye perceives movement as
continuous—a phenomenon known as persistence of vision.

• A common rate for streaming video that approximates full-motion video
is 15 fps. To most people, a 15 fps video flows smoothly, though not quite
as f luidly as one at a higher rate.

• Below 15 fps, a video looks jerky.

• Below 7 fps, a video looks very jerky.

• Below 3 fps, a video essentially becomes a slideshow.

Audio Codecs for Streaming RealVideo Clips

Target Audience Clip Speed Voice Codec Music Codec

28.8 Kbps modem 20 Kbps
6.5 Kbps Voice 8 Kbps Music - RealAudio

56 Kbps modem 34 Kbps

64 Kbps single ISDN 50 Kbps 8.5 Kbps Voice 11 Kbps Music - RealAudio

128 Kbps dual ISDN 100 Kbps 16 Kbps Voice 20 Kbps Music - RealAudio

Corporate LAN 150 Kbps

32 Kbps Voice

32 Kbps Stereo Music High
Response - RealAudio

256 Kbps DSL/cable 225 Kbps 44 Kbps Stereo Music High
Response - RealAudio

384 Kbps DSL/cable 350 Kbps

64 Kbps Voice

64 Kbps Stereo Music -
RealAudio

512 Kbps DSL/cable 450 Kbps 96 Kbps Stereo Music -
RealAudio768 Kbps DSL/cable 700 Kbps
75

RealNetworks Production Guide
Most source videos start out at 15 to 30 fps. During encoding, RealVideo
adjusts this frame rate downward as necessary, keeping the rate up in high-
action scenes, reducing it in slow ones. Thus, your encoded clip will not have
just one frame rate, but a mix of frame rates that varies with its content. If you
follow good production practices, your clips will typically stream over slow- to
medium-speed connections at 7 to 15 fps. At higher speeds, you’ll get 15 to 30
fps. Many factors, though, affect a RealVideo clip’s frame rate:

• The video’s dimensions greatly affect frame rate. If you use too large of a
window for your target bandwidth, you will not get a high frame rate. For
more information, see “Video Encoding Dimensions” on page 84.

• RealVideo 10 provides video quality superior to that produced by older
RealVideo codecs. Using an older codec may result in a lower frame rate.

• Visually complex videos that show many objects moving across the screen
simultaneously are hard to encode and may result in a low frame rate.

• In a video that has a mix of fast and slow scenes, variable bit-rate encoding
(VBR) and two-pass encoding generally help the fast scenes achieve a
higher frame rate. For more information on VBR, refer to RealProducer 10
User’s Guide.

• When encoding with RealProducer Plus, you can lower the bit rate of the
RealAudio codecs used for a given clip. This gives more bandwidth to the
visual track, helping to raise the frame rate.

RealVideo Clarity

In addition to changing its frame rate, RealVideo can reduce a clip’s streaming
size by throwing out pixel data. A video stores information about each pixel in
the frame. RealVideo, on the other hand, stores data for pixel groups. When
bandwidth is tight, RealVideo shoehorns pixels with slightly different RGB
values into the same group. These pixels then look identical rather than nearly
identical. This may result in a loss of detail if compression is too high. The
following illustration compares a smooth video with one that has lost detail
through too much compression.
76

CHAPTER 4: Video Production
Smooth and Distorted Video

By using good production practices as described in this chapter, you can help
keep the video’s clarity intact during encoding. Also note the following points:

• The video’s dimensions affect visual clarity. If you use too large of a
window for your target bandwidth, visual clarity may suffer. For more
information, see “Video Encoding Dimensions” on page 84.

• A video with relatively stationary subjects (“talking heads”) will have
better visual quality than a video with rapid scene changes and a lot of
movement.

• If you plan to launch a video in double- or full-screen mode as described
in “Controlling How a Presentation Initially Displays” on page 517, boost
video clarity as much as possible during production and encoding.
RealPlayer enlarges the clip by duplicating its pixels, which magnifies any
defects.

RealVideo Codecs

RealVideo 10 is the standard RealVideo codec, but you can also encode with
older RealVideo codecs. The codec you use encodes all of a clip’s SureStream
streams. You cannot encode half the streams with the RealVideo 10 codec, for
example, and the other half with the RealVideo 9 codec.

RealVideo 10 Codec

The RealVideo 10 codec creates the highest-quality compressed video possible.
It offers improved visual quality over RealVideo 9 and RealVideo 8, especially
with fast-action scenes and on-screen text. Because RealVideo 10 performs
more complex analysis of video data than earlier codecs, encoding may take
more than twice the time required with RealVideo 9.
77

RealNetworks Production Guide
RealVideo 10 is compatible with RealOne Player and later. Users of older
RealPlayers are prompted to update to RealPlayer 10 when they attempt to
play RealVideo 10 content. Playback of RealVideo 10 content consumes the
same amount of system resources on the viewer’s computer as playback of
RealVideo 9. Viewers, therefore, will not notice any performance slowdown
when playing a RealVideo 10 clip compared to a RealVideo 9 clip.

Tip: RealNetworks recommends using this codec unless you
need faster encoding performance during broadcasts, or you
need to stream video to earlier versions of RealPlayer.

RealVideo 9 Codec

RealVideo 9 improves on RealVideo 8 with higher compression and improved
visual quality. RealOne Player and later can play RealVideo 9 clips. Older
versions of RealPlayer are prompted to autoupdate to RealPlayer 10.

RealVideo 8 Codec

The RealVideo 8 codec is backwards-compatible to RealPlayer 8. The video
quality is not as high as with RealVideo 9 and 10, but encoding is faster.
Additionally, RealVideo 8 requires fewer resources on the RealPlayer machine
to decompress. This makes it suitable for the slower processors of mobile,
handheld devices.

Steps for Streaming Video

When producing a video clip, you should choose the best source material and
best equipment possible. The goal throughout the video production process is
to get optimum video quality for each streaming speed.
78

CHAPTER 4: Video Production
Creating Video Clips

➤ The following steps summarize how to create a video clip:

1. Capture the video content.

To start video production, you capture the source video by shooting a
scene with a video camera, for example, or gathering prerecorded content
from a tape, satellite, laserdisc, or other source.

For More Information: “Recording Video” on page 80 provides
guidelines for shooting a video.

2. Digitize and edit the video file.

You next digitize the video to convert it to a standard file format, such as
AVI or QuickTime. With your preferred video editing software, you can
then edit the video as necessary. If you are broadcasting live, however, you
encode the streaming video directly from the source.

Digitized
Raw Video

(.avi, .mov, .mpeg) Video
Editing
Station

Optimized
Video

Captured
Video Encoder

Encoded
Video Clip

Player
Streamed

Video

REC
SP
0:20:49

JUN . 2 . 2002 . . 7:30.AM

30 min
79

RealNetworks Production Guide
For More Information: See “Digitizing Video” on page 82 for tips
on video editing.

3. Encode the streaming video clip.

With your digitized file optimized or your live broadcast ready to go, you
encode your source as a streaming clip, such as RealVideo. When you do
this, you target a network bandwidth or a set of bandwidths.

4. Deliver the streaming video.

With your presentation ready to go, you make your video clip or broadcast
available through your Web site. If you are combining video with another
streaming clip, you write a SMIL file that assembles the pieces.

For More Information: Chapter 8 explains how to create a SMIL
file. See Chapter 21 for instructions on linking your Web page
to a video clip or a SMIL file.

Recording Video
Read this section if you intend to shoot a new video rather than use existing
video content. Because video loses image quality if it’s highly compressed,
always start with the best video source available.

Tip: Always keep copies of the video source files. You cannot
convert RealVideo clips back to their original source formats
or any other streaming formats.

For More Information: For pointers on recording audio, see
“Capturing Audio” on page 67.

Source Media Quality

Whether you shoot a video yourself or digitize existing material, start with a
high-quality video media. The following are common video formats, listed in
order of descending quality:

1. Betacam SP, also known simply as Beta. This format is common among
video production professionals.

2. DV, miniDV, DVCam, or DVCPro.

3. Super-VHS (S-VHS) or HI-8mm.
80

CHAPTER 4: Video Production
4. VHS, 8mm.

Video Staging

Consider the video’s final frame size before you shoot the first frame.
Streaming over 56 Kbps modems requires a small video window, so you need
to frame important visual elements well. For recommended clip dimensions,
see “RealVideo Frame Rates” on page 75.

Scene Changes and Movement

The fewer things that change from frame to frame, the sharper the image will
appear in a low-bandwidth video. You can do the following to cut down on
unnecessary movement:

• Use a mounted camera rather than hand-held one. This greatly reduces
the movement you inadvertently introduce into the scene when recording.

• Don’t have a rapidly moving object fill the entire frame. But you don’t
want to pull the camera back too far either. You need to find a happy
medium between close-ups and panoramic shots.

Of course, you don’t want to eliminate all dynamic elements. When you do
include rapid movement, allow enough time for objects to resolve. Because of
low frame rates and high compression, objects coming to rest may appear
blurry at first. If you have a dialog box popping up on a computer screen, for
example, have the box remain stationary for a few seconds so that the image
resolves.

Tip: RealPix makes a great companion to RealVideo. When
presenting a lecture, for example, use RealVideo to show the
speaker, and use a RealPix slideshow to present visual aids such
as information written on a blackboard. For more on RealPix,
see Chapter 7.

Colors and Lighting

Bright lighting at a constant exposure keeps the foreground detail crisp. Use
uniformly dark colors for backgrounds, and uniformly light colors (but not
whites) for clothing. Complex textures such as paisley and stripes degrade the
final image quality with unwanted visual effects.
81

RealNetworks Production Guide
Video Output

Video playback devices commonly have at least two common output types—
S-video and composite. Use S-video, as it produces better results.
Professional-grade devices typically have other, high-quality output modes
that can connect to a video capture card.

Color Depth

Always use 24-bit color. Lower color resolution results in poor clips.

Digitizing Video
The following sections provide recommendations on frame rates and video
dimensions when capturing video input into a digitized file, and encoding the
video into a streaming or downloadable clip. When you encode directly from a
capture source, you do not create an input file first. However, it is still
important to choose your encoded output dimensions correctly to produce a
high-quality clip or broadcast.

For More Information: See “Understanding RealVideo” on page
73 for background on the relationship between dimensions,
bandwidth, frame rate, and visual clarity.

Digitized Video Formats

It is better to work with uncompressed formats. Otherwise, you compress the
source once when you digitize it and again when you encode it as RealVideo.
This double compression can decrease the image quality. Use a compressed
source format only if your RealVideo encoding tool supports the file as input.
You can use compressed AVI files as long as the computer used to encode
RealVideo clips has the same Video for Windows driver used to compress the
AVI file.

Video Capture Dimensions

If you capture video to a digitized file format, such as AVI or MPEG, you can
edit the video using video editing software before encoding it as RealVideo. In
this case, digitize the video at 320 pixels wide by 240 pixels high unless you are
short on disk space or your video capture card recommends different
dimensions.
82

CHAPTER 4: Video Production
Full-Screen Capture

You may want to capture full-motion video at the full-screen size of 640 by
480 pixels if all of the following are true:

• Your clips will stream at broadband speeds of 256 Kbps or higher.

• Your encoded clips will be larger than 320 pixels by 240 pixels.

• You have a video workstation capable of digitizing full-motion, full-screen
video. Standard PCs typically cannot handle this large of a load.

Video Capture Frame Rates

When you capture content to a source file first, digitize the video at 15 frames
per second (fps) if you plan to stream the clip at less than 150 Kbps. For these
low speeds, 15 fps is the maximum rate that the standard RealVideo audiences
encode. Above speeds of 150 Kbps, RealVideo can encode up to 30 fps, so it is
better to capture the source input at 30 fps.

For More Information: For more information about the frame
rate for encoded clips, see “RealVideo Frame Rates” on page 75.

Computer Speed and Disk Space

Because video capture places a large burden on a computer’s CPU and hard
drive, use the fastest computer you have available. On Windows computers,
you can use any video capture card that supports Video for Windows or
DirectShow.

Disk Space Requirements for Video Capture

Use the following formula to calculate the approximate size in megabytes of a
digitized video file:

Suppose you want to capture a three-minute video at 15 frames per second,
with 24-bit color, in a window that is 320 by 240 pixels. As you can see from
the following equation, your digitized source file would be approximately 622
MB:

(320) x (240) x (24) x (15) x (180) / 8,000,000 = 622 Megabytes

(pixel width) x (pixel height) x (color bit depth) x (fps) x (duration in seconds)

8,000,000
83

RealNetworks Production Guide
If necessary, you can conserve disk space by decreasing the clip dimensions or
lowering the frame rate, or both.

Video Source File Size Limit

Some computer file systems limit a single file to 2 GB (2048 MB) in size. At a
320-by-240 size and 15 fps, this translates to about 9.5 minutes of video.
Certain video production programs support the OpenDML (AVI 2.0)
standard, which allows the creation of files larger than 2 GB. If you plan to
produce long videos or videos with large dimensions, check whether or not
your video production software is limited to a 2 GB output file size.

Tip: If you are limited to 2 GB for the video source file and you
need to produce a larger video, you can create separate video
source files (each 2 GB or smaller) and encode them as separate
RealVideo clips. Then, merge the clips using RealProducer’s
editing tools. Refer to RealProducer 10 User’s Guide for more
information.

Video Encoding Dimensions

When you capture video to a digitized input clip, you want to capture the
largest size possible to preserve as much quality as you can. When you encode
the file as RealVideo, however, you may need to reduce the video dimensions.
Choosing dimensions too large for a given target bandwidth can result in a
low frame rate or a large number of visual artifacts, rendering the video jerky
or fuzzy.

There are no specific rules for which video dimensions to use, other than to
maintain the aspect ratio of the digitized source. The primary consideration
for selecting encoding dimensions is bandwidth, though other factors can
affect the quality. For example, to keep its frame rate higher, a fast-action clip
may require smaller dimensions than a low-action clip.

For More Information: To resize a video, you can scale the source
file with your video editing software. Or, you can crop or resize
the RealVideo clip as you encode it.

Desktop Video Dimension Recommendations

Most videos encoded for streaming to a desktop media player use a 4:3 aspect
ratio to fit the dimensions of standard computer monitors. The following are
84

CHAPTER 4: Video Production
general recommendations for encoded video dimensions based on your target
audience’s bandwidth:

• For desktop audiences with bandwidth less than 256 Kbps, use a smaller
size, such as 240 pixels wide by 180 pixels highor 176 pixels wide by 132
pixels high.

Tip: RealVideo 10 provides higher quality at high compression
rates than older RealVideo codecs. When developing video for
low-bandwidth audiences, using RealVideo 10 provides higher
quality at larger dimensions.

• For desktop broadband connections of 256 Kbps or higher, encode your
clip at 320 pixels wide by 240 pixels high.

• At very high bandwidths, you can choose larger dimensions, such as 640
by 480. To use these dimensions, however, the input should be of very
high quality.

Mobile Device Video Dimension Recommendations

Mobile devices such as personal digital assistants and smartphones may have
different screen sizes, so it’s useful to know the specifications for the devices
you are targeting. A common screen resolution of most smartphones is 176
pixels by 144 pixels. This size does not have the 4:3 aspect ratio common to
television and desktop video. If you are starting with a larger, 4:3 source such
as 320 by 240, you can do two things:

• Reduce the video to 176 pixels wide by 132 pixels high. This leaves 12
pixels of screen height unused.

• If the input video width is 320 pixels, crop out portions from one or both
sides to create a width of 292 pixels. Then scale the video smaller to
approximately 176 pixels by 144 pixels.

For More Information: For more about RealPlayer for mobile
devices, visit http://www.realnetworks.com/industries/
mobile/index.html.

High-Bandwidth and Low-Bandwidth Streaming Audiences

If you want to encode a video clip or broadcast for both low-bandwidth and
high-bandwidth audiences, you can adopt two different strategies:

• Use the same clip or broadcast for all audiences.
85

RealNetworks Production Guide
Using SureStream technology, you can create a single RealVideo clip that
streams at many bandwidths. However, if you create the video at a large
size such as 320-by-240, the clip will not stream well to slow connections.
Using a smaller size benefits modem users, but does not take full
advantage of the greater bandwidth of faster connections.

• Create separate clips for low-bandwidth and high-bandwidth viewers.

Creating separate clips allows you to encode a larger clip for high-
bandwidth audiences, and a smaller clip for low-bandwidth audiences.
You can make the clips available through separate links, or use a SMIL
<switch> tag to let RealPlayer choose which version to play.

For More Information: For information about using SMIL to
select clips, refer to Chapter 18.
86

C H A P T E R
5

 Chapter 5: FLASH ANIMATION
Using Macromedia Flash, you can stream animations on the World
Wide Web. Delivered by Helix Server, Flash clips can create visually
arresting animations that play in RealPlayer. This chapter provides
guidelines for creating and optimizing Flash clips that stream to
RealPlayer. For instructions on developing Flash animation, refer to
the Flash user’s guide.

For More Information: Learn more about Flash from
Macromedia’s Web site at http://www.macromedia.com/
software/flash.

Understanding Flash
Flash is well-suited for linear presentations that have a continuous audio track
and animated images synchronized along a timeline. Such presentations
could include:

• demonstrations, training courses, and product overviews

• full-length cartoons for entertainment and education

• product advertisements

• movie trailers

• Karaoke

With Flash commands, you can build interactive icons and forms for:

• electronic commerce

• on-screen navigation

• Internet radio tuners

• e-mail registration
87

RealNetworks Production Guide
This section explains how Flash works with RealPlayer. This knowledge will
help you produce high-quality streaming animation.

Software Versions for Flash

Streaming Flash version 3 or 4 to RealPlayer requires RealSystem Server 8 or
later. Earlier versions of RealSystem Server stream only Flash 2. RealPlayer 8 or
later is required to play Flash 3 or 4 clips. Flash clips that embed sound effects
require RealOne Player or later. RealPlayer G2 or 7 will autoupdate to the
latest RealPlayer release when it encounters a Flash 3 or 4 clip.

RealPlayer does not support the Flash 5 or Flash MX Player format. You can
develop your animation with Flash 5, or a later version of that program, but
your exported Flash Player clip must be in the Flash 2, 3, or 4 format. Note
that the Flash 5 program can automatically export and tune your clips in the
Flash 4 format for streaming to RealPlayer.

Flash in the Three-Pane Environment

This chapter describes techniques for creating streaming Flash presentations
that play in RealPlayer’s media playback pane. RealPlayer includes support for
Flash animation by default, so any viewer with RealPlayer will be able to view
your Flash animation without downloading a plug-in, as long as the
animation streams to the media playback pane.

Flash animation clips can also display within an HTML page displayed within
the media browser or related info pane. In those cases, the Flash animation is
rendered by the Flash plug-in for the browser application used by RealPlayer
(Internet Explorer 4 or later for RealPlayer on Windows). Playing an animation
in a RealPlayer HTML pane therefore requires a viewer to download and install
the Flash browser plug-in if it’s missing.

For More Information: For more on the three-pane environment,
see “Step 2: Learn the RealPlayer 10 Interface” on page 29.

Flash Bandwidth Characteristics

As with any streaming clip, you develop a Flash clip with a target audience
bandwidth in mind. The table “Maximum Streaming Rates” on page 46 lists
the highest rate at which your Flash clip should stream for various network
connection speeds. Keep in mind, too, that if your Flash clip streams along
with other clips, the combined streaming speed of all the clips should not
88

CHAPTER 5: Flash Animation
exceed the maximum speed for the target audience. This helps ensure that
your presentation does not rebuffer frequently.

Because most Internet users have 28.8 or 56 Kbps modems, RealNetworks
recommends that you target dial-up modem audiences. Fortunately, Flash
clips streamed over a 28.8 Kbps modems can have a visual impact comparable
to that of a video streaming at a significantly higher bit rate. This is because
Flash clips transmit vector information rendered by the viewers’ computers.
Hence, the quality of Flash animation depends more on a computer's CPU
and graphics capabilities than on the amount of streamed data.

Because it is vector-based, Flash does not consume bandwidth evenly. When a
scene starts, for example, its groups and symbols are streamed, requiring a lot
of data transfer. After that, only lightweight instructions for manipulating
groups and symbols are needed. This following figure shows a Flash clip that
targets a streaming speed of 12 Kbps. At 2 and 7 seconds into the clip’s
timeline, bandwidth use spikes because the clip needs more than 12 Kilobits
of data to change scenes or to introduce new objects in a key frame.

Bandwidth Use in an Untuned Flash Clip

If it encounters spikes, RealPlayer buffers the data, delaying playback until all
of the necessary data has arrived. For your clip to stream well, you must
eliminate spikes by tuning the finished clip. Tuning the clip also sets the clip’s
streaming bit rate and preroll. The Flash 5 program can export and tune a clip
in the Flash 4 format automatically. Or, you can tune an exported clip
manually with the Flash tuner. The tuner is included in the utilities folder of
the zipped HTML version of this manual.

Bit Rate (Kb) Untuned
Clip

Time (Seconds)

25

20

15

10

5

0

10 2 3 4 5 6 7 8 9 10

Streaming
Speed
Target

Actual
Bandwidth
Use
89

RealNetworks Production Guide
Bandwidth Use in a Tuned Flash Clip

For More Information: See “How to Download This Guide to
Your Computer” on page 11 for instructions on getting a local
copy of this guide.

Tip: You will not know how well your clip streams until you
tune it. Because you may need to revise the animation to make
the clip stream well for your chosen audience, export and tune
the animation frequently as you develop it.

Flash Clip Size

Tuning your Flash clip guarantees that it streams at your chosen bit rate. If
your animation is too complex, however, tuning it to a low bit rate may cause
an unacceptably high preroll in RealPlayer. The best way to guarantee a low
preroll is to keep the ratio of clip size to clip length low. The following are tips
for keeping the Flash clip size as small as possible as you develop your
animation:

• Reduce key frames.

Excessive key frame changes increase bandwidth consumption. Minimize
the number of key frames and simplify the objects within key frames.

• Use symbols instead of groups.

Flash stores a symbol once and can then refer to it at any time, with each
reference adding little to the file size. However, it stores a group definition
each time the group is used. Using a group three times, for example, stores
the same data in the file three times. Using symbols instead of groups can
therefore reduce file size significantly.

Bit Rate (Kb) Tuned
Clip

Time (Seconds)

25

20

15

10

5

0

10 2 3 4 5 6 7 8 9 10

Actual
Bandwidth
Use

Streaming
Speed
Target
90

CHAPTER 5: Flash Animation
• Simplify elements.

Simplify the elements that you draw or import into Flash. Under
Modify>Curves, use the Smooth and Straighten commands on lines and
curves to strip away unneeded point and path information. This reduces
the amount of data stored for each element. Use Optimize to optimize the
data reduction while maintaining acceptable screen appearance. Because
screen resolution is lower than print resolution, you can eliminate minute
details without compromising appearance.

• Compress event sounds as MP3.

As described in “Adding Audio to Flash” on page 92, RealPlayer can play
event sounds, such as rollover sounds, embedded in the Flash Player file.
To minimize your final file size, do not use large sound clips for event
sounds, and use MP3 compression when you export the Flash Player clip
(.swf).

• Adjust JPEG quality when exporting.

If your animation has imported graphics, set the JPEG quality to no
greater than 50—possibly as low as 30—when exporting the .fla file to a
.swf clip.

Flash CPU Use

Bandwidth use is not the only consideration when developing Flash
animation. Because it is vector-based, Flash performs complex calculations on
the user’s computer to display the animation. Operations that require many
calculations in addition to the computer’s normal load may adversely affect
playback. Newer computers typically have processors that are fast enough to
handle Flash and other clips streamed in parallel, but older computers may
not have this capacity. To support the widest audience possible, follow these
recommendations to reduce Flash CPU requirements:

• Reduce the frame rate.

Macromedia recommends a Flash frame rate of 12 frames per second
(fps). If you combine a Flash clip with another clip that needs
considerable processing power, though, you may need to lower this frame
rate to accommodate slow computers. Try 9 fps or 7 fps when combining
Flash with RealAudio, for example. These rates provide acceptably smooth
motion without overburdening most processors.
91

RealNetworks Production Guide
• Optimize tweening.

The tweening process interpolates the motion between key frames.
Interpolating multiple objects and color effects at the same time will
adversely affect playback. Other actions related to tweening that slow
down playback include changing large areas of the screen between frames
and using gradient fills.

• Decrease the number and size of objects moving simultaneously.

RealPlayer must redraw areas where action occurs, thus consuming CPU
power. To minimize this, localize tweening to a small portion of the screen
so that the entire screen does not have to be redrawn. This way, file size
remains the same, but only one part of the screen is redrawn.

Adding Audio to Flash
You can use two methods to add sound to a Flash clip played in RealPlayer.
You can even combine these methods.

Adding Event Sounds

You can import short sound effects that play on particular events, such as
cursor rollovers or button clicks. These sound effects stay with the animation
when you export the Flash Player file. You can import sound files in any
format that your Flash application can read, such as WAV or QuickTime.

Note: Event sounds play only in RealOne Player or later, and
are not available in RealPlayer 8.

Using a Continuous Soundtrack

A soundtrack, such as continuous background music or an audio narration,
can play along with your Flash clip. This is applicable primarily to linear clips
such as a cartoons, rather than to interactive applications. To create a
continuos soundtrack, you first synchronize your animation with an
imported sound file, such as a WAV or QuickTime file. You then export two
files:

• A Flash Player clip that contains no soundtrack (it can contain event
sounds, however).
92

CHAPTER 5: Flash Animation
• A soundtrack that you encode as a audio clip in any streaming format
playable by RealPlayer, such as RealAudio.

Using SMIL, you synchronize both clips for streaming. By keeping the
soundtrack separate, you help the presentation stream more smoothly, and
you can use SureStream RealAudio to scale the audio quality up for users with
faster network connections.

The Flash 5 program can create a SMIL file and export your soundtrack as a
RealAudio clip automatically. If you use an earlier version of Flash, you export
the soundtrack manually, encode it as a streaming audio clip, and write the
SMIL file, as illustrated in the following figure. “Streaming a Flash Clip” on
page 101 summarizes this exporting process.

A Flash Soundtrack Uses a Separate Audio Clip

Tip: Flash provides different methods for incorporating sound
into an animation. Use the stream synchronization setting.

Dividing Bandwidth Between Flash and RealAudio

When you export and encode your Flash soundtrack as a SureStream
RealAudio clip, all viewers get the same Flash clip, but they get different
RealAudio streams depending on their network connection speeds. For any
network connection, determining your Flash and RealAudio clip speeds is a
two-step process:

1. Decide which RealAudio codecs to use to encode the soundtrack. All
codecs are listed in “RealAudio Codecs” on page 61.
93

RealNetworks Production Guide
2. For your lowest-speed target audience, subtract the lowest RealAudio
streaming speed from the target’s maximum streaming speed to get the
Flash clip’s maximum streaming speed.

For More Information: The table “Maximum Streaming Rates”
on page 46 lists the streaming speeds for various network
connection speeds.

Targeting 28.8 Kbps Modems

The following table lists possible RealAudio and Flash bit-rate combinations
for 28.8 Kbps modems, which have a maximum streaming speed of 20 Kbps. If
you choose an 8 Kbps music codec for RealAudio, for example, you have 12
Kbps of streaming bandwidth left for Flash.

Targeting 56 Kbps Modems

Suppose you want to reach 56 Kbps modems, which have a maximum
streaming speed of 34 Kbps. The following table lists some RealAudio codecs
you can use, indicating for each codec the streaming speed left for the Flash
clip.

Bandwidth Divisions between RealAudio and Flash at 20 Kbps

Soundtrack Type RealAudio Codec Flash Maximum Speed

Voice

5 Kbps Voice 15 Kbps

6.5 Kbps Voice 13.5 Kbps

8.5 Kbps Voice 11.5 Kbps

Music

6 Kbps Music -
RealAudio

14 Kbps

8 Kbps Music -
RealAudio

12 Kbps

11 Kbps Music -
RealAudio

9 Kbps

Bandwidth Divisions between RealAudio and Flash at 34 Kbps

Soundtrack Type RealAudio Codec Flash Maximum Speed

Voice

6.5 Kbps Voice 27.5 Kbps

8.5 Kbps Voice 25.5 Kbps

16 Kbps Voice 18 Kbps
 (Table Page 1 of 2)
94

CHAPTER 5: Flash Animation
Targeting Both 28.8 and 56 Kbps Modems

To target both 28.8 and 56 Kbps modems, decide first how to reach the 28.8
Kbps audience. For a voice soundtrack, for example, you might use a 6.5 Kbps
RealAudio voice codec, leaving 13.5 Kbps for Flash. To reach 56 Kbps modems,
you would encode the soundtrack as a SureStream RealAudio clip using both
the 6.5 Kbps voice codec and a 16 Kbps voice codec. Users with 56 Kbps
modems then get 16 Kbps of RealAudio data along with the 13.5 Kbps Flash
clip. This puts the streaming speed for this combination at 29.5 Kbps, a little
less than the 34 Kbps maximum.

Tips for Choosing RealAudio Codecs

Here are some tips for selecting a RealAudio codec to use with a streaming
Flash clip:

• If sound quality takes precedence, use the fastest RealAudio codec that
still leaves enough bandwidth for acceptable animation.

• When animation is complex, use low-speed RealAudio codecs targeted for
voice. This increases the bandwidth available for the animation.

• If possible, do not select the lowest-speed RealAudio codec. SureStream
clips include a duress stream that is used if the connection bandwidth
falls. An 8 Kbps music clip, for example, includes a 6 Kbps duress stream.
If you encode the clip using just the 6 Kbps codec, RealPlayer will have no
duress stream to fall back on.

• To encode a RealAudio clip with exactly the codec you want, you may need
to change the RealAudio default target audience settings. You need
RealProducer Plus to do this, because RealProducer Basic does not allow
changes to the default settings.

Music

11 Kbps Music -
RealAudio

23 Kbps

16 Kbps Music -
RealAudio

18 Kbps

20 Kbps Music -
RealAudio

14 Kbps

Bandwidth Divisions between RealAudio and Flash at 34 Kbps (continued)

Soundtrack Type RealAudio Codec Flash Maximum Speed

 (Table Page 2 of 2)
95

RealNetworks Production Guide
Using Interactive Flash Commands
Because RealPlayer supports all Flash 3 and Flash 4 commands, you can make
your presentations interactive by adding buttons and forms. In some cases,
Flash commands work differently in RealPlayer than in the Flash browser
plug-in. This section provides guidelines for using Flash commands with
RealPlayer presentations.

Flash Clip Timeline Commands

Flash has several commands you can use to control the Flash clip’s timeline.
In a Flash 3 or 4 clip, these commands affect only the Flash clip. The
presentation and all other clips playing along with the Flash clip continue
through their timelines normally. In a Flash 2 clip, these commands affect all
clips playing in RealPlayer.

RealPlayer Commands

As noted in the preceding table, commands such as Play, Stop, and Go To in
Flash 3 and Flash 4 clips affect only the Flash clip. Using Flash’s Get URL

Interactive Flash Commands

Command Function

Play Begins or resumes Flash clip playback.

Stop Pauses the Flash clip until a Play command is issued. With a Flash 3 or 4
clip, all other clips play normally. With a Flash 2 clip, all other clips
pause.

Go To and
Stop

Seeks to the designated frame in the Flash clip and pauses. The Flash
clip timeline resumes on a Play command. With a Flash 3 or 4 clip, all
other clips play normally. With a Flash 2 clip, all other clips seek to the
same point in the presentation timeline and then pause. See also “Go To
Commands” on page 98.

Go To and
Play

Seeks to the designated frame in the Flash clip, buffers the clip preroll,
and begins playback. With a Flash 3 or 4 clip, all other clips play
normally. With a Flash 2 clip, all other clips seek to the same point in
the presentation timeline and then resume playback.

Get URL Sends the URL to the media browser pane or, for earlier RealPlayers, the
viewer’s default Web browser. If the user has to return to the animation
manually, you may want to use this only at the end of a clip. Also note
that a SMIL file can define clickable hyperlinks that overlay a Flash clip.
See Chapter 15 for more information.
96

CHAPTER 5: Flash Animation
command, though, you can play, stop, or pause all clips playing in RealPlayer.
You can also launch a URL in a new RealPlayer window. You do this by sending
RealPlayer a command (rather than a URL) through Get URL.

Seeking Into a Presentation

The following value for Get URL instructs RealPlayer to seek to the specified
time in the presentation timeline:

command:seek(time)

For example, the following command instructs RealPlayer to seek to 1:35.4 in
the presentation timeline:

command:seek(1:35.4)

The time format is as follows:

dd:hh:mm:ss.xyz

Here, dd is days, hh is hours, mm is minutes, ss is seconds, x is tenths of
seconds, y is hundredths of seconds, and z is milliseconds. Only the ss field is
required. When the time value does not include a decimal point, RealPlayer
reads the last field as the seconds. For example, 1:30 means 1 minute and 30
seconds, whereas 1:30:00 means 1 hour and 30 minutes. Note that all of the
following commands are equivalent. Each seeks to the point 90 minutes into
the presentation timeline:

command:seek(1:30:00.0)
command:seek(90:00)
command:seek(5400)

Playing, Pausing, or Stopping a Presentation

The following values for Get URL cause RealPlayer to play, pause, or stop the
presentation, respectively:

command:play()
command:pause()
command:stop()

Popping Up New Media Windows

Using the Get URL command, you can open streaming presentations in new
RealPlayer media playback windows. You can open as many player windows as
the computer’s CPU and memory allow. For information on opening a new
media playback window, see “Opening a Media Playback Window with a Clip
Link” on page 384.
97

RealNetworks Production Guide
Go To Commands

Use Go To commands only when adding interactivity to a Flash clip. Do not
use them to advance from one scene to the next. When you export your
animation in the Flash Player format, scenes are concatenated so that the
animation f lows from one scene to the next. A Go To command causes
RealPlayer to seek to the target frame. If Helix Server has not yet streamed the
target frame, RealPlayer halts clip playback, issues a seek request to Helix
Server, and rebuffers the new data as it comes in.

When you use at least one Go To command in a Flash 3 or 4 clip, RealPlayer
caches the entire clip in memory. It assumes that the clip is interactive and
that the Go To commands are meant to move the viewer from one part of the
clip to another based on input such as a button click. After Helix Server has
streamed the frames containing the Go To command and its target, RealPlayer
does not need to rebuffer the clip when the viewer gives the command.

Using a Go To command raises RealPlayer’s memory requirement for playing
the clip. This is generally not a problem, because Flash memory requirements
are low. When authoring long, linear animations, though, avoid using Go To
commands whenever possible. When no Go To commands are present,
RealPlayer discards clip data it no longer needs. This helps guarantee good-
quality playback on computers that are low on available memory.

Load Movie Commands

RealPlayer imposes a restriction on using Flash’s Load Movie command to
import a second Flash clip into a clip that is playing. If the clips use the RTSP
protocol, Helix Server stops the first clip and streams the second clip as a new
RealPlayer presentation rather than streaming the second clip as part of the
initial presentation. The Load Movie command works properly only when clips
are downloaded with HTTP. There are two ways to manage this:

• Stream the first clip with RTSP by using rtsp:// in the SMIL or Ram file
URL for the clip. In a Load Movie command, use a fully qualified HTTP
URL for the clip. RealPlayer will then request the clip with the given URL.
This is the preferred solution because the first clip uses RTSP, which is a
better protocol for streaming.

Tip: Helix Server supports both RTSP and HTTP. You can
therefore put all clips in the same Helix Server directory,
streaming the first one with RTSP and all of the others with
98

CHAPTER 5: Flash Animation
HTTP. Just be sure not to include /ramgen/ in the URLs used
with the Load Movie command.

• The second solution is to download all clips by using HTTP. Use http:// in
the SMIL or Ram file URL to the initial clip. In a Load Movie command,
you can then refer to an imported clip using just its file name. RealPlayer
requests subsequent clips using the same HTTP URL (except for the
different file names) used to download the first clip.

Tip: If your presentation does not use SMIL, use a Ram file
instead of Ramgen to list the HTTP URL to the first clip. Helix
Server’s Ramgen utility adds /ramgen/ to the first clip’s URL.
When RealPlayer reuses this URL, the /ramgen/ component
starts a new presentation.

Timeline Slider Activity with Multiple Clips

If your presentation includes multiple Flash clips integrated with Load Movie
commands, the RealPlayer slider ref lects only the first clip’s timeline. Suppose
that a clip plays for five minutes and then loads another clip. The RealPlayer
slider is active only for the five minutes the first clip plays. After that, the
second clip plays normally, but RealPlayer indicates that the presentation has
finished by resetting the timeline slider and disabling the stop button. Viewers
can still perform interactive functions and stop the second clip by using
Flash’s contextual menu, though.

Using SMIL Instead of Load Movie

You need to use the Load Movie command to insert a new Flash clip into a
Flash clip that is already playing. You do not need to use this command to
play two or more Flash clips in sequence, though. Instead, you can use SMIL
to define the sequence. This overcomes the URL and timeline limitations
described above. To play two clips in sequence, for example, you write a SMIL
file that looks like the following:

<smil xmlns=“http://www.w3.org/2001/SMIL20/Language”>
 <body>
 <seq>
 <animation src=”rtsp://helixserver.example.com:554/media/cartoon1.swf”/>
 <animation src=”rtsp://helixserver.example.com:554/media/cartoon2.swf”/>
 </seq>
 </body>
</smil>
99

RealNetworks Production Guide
You can also use SMIL to combine each Flash clip with a RealAudio clip. The
example below has two clip groups that play in sequence. Each clip group is
composed of a Flash clip and a RealAudio clip played in parallel:

<smil xmlns=“http://www.w3.org/2001/SMIL20/Language”>
 <body>
 <seq>
 <par>
 <animation src=”rtsp://helixserver.example.com:554/media/cartoon1.swf”/>
 <audio src=”rtsp://helixserver.example.com:554/media/sound1.rm”/>
 </par>
 <par>
 <animation src=”rtsp://helixserver.example.com:554/media/cartoon2.swf”/>
 <audio src=”rtsp://helixserver.example.com:554/media/sound2.rm”/>
 </par>
 </seq>
 </body>
</smil>

For More Information: For information on SMIL, see Chapter 8.

Secure Transactions

Using Flash forms, you can build transaction functionality directly into Flash
clips streamed to RealPlayer. This lets you add e-commerce capability to your
presentation, for example. If the Flash clip connects to a secure server,
RealPlayer transmits the encrypted information through its built-in browser.
Any encrypted response sent back by the secure server displays in the media
browser pane, rather than the media playback pane in which the Flash clip
plays.

Tip: Because RealPlayer does not display responses to secure
transmissions in its media playback pane, do not send an
HTTP POST or GET command to a secure server if you intend
for the server’s response to come back to the Flash clip. For
example, do not connect to a secure server by using Flash’s
Load Variables or Load Movie command.

Note: Earlier versions of RealPlayer, which do not have built-in
browsers, send secure transactions through the viewer’s default
browser.
100

CHAPTER 5: Flash Animation
Mouse Events

When Flash animation plays in the RealPlayer media playback pane,
RealPlayer tracks certain mouse events differently than does the Flash plug-in
used with browsers. Although this does not change how you build a streaming
Flash presentation and it will not affect most viewers, you should be aware of
this behavior.

The Flash browser plug-in records mouse events that occur outside of the
Flash area. For example, a user may click and hold on an icon, drag the pointer
out of the Flash area, and release the mouse button. In this case, the Flash
browser plug-in knows that the mouse button has been released. The
RealPlayer media playback pane, however, does not record mouse events that
occur outside of its Flash region. Instead, it assumes that the button is still
held down when the pointer returns to the Flash region.

Streaming a Flash Clip
This section summarizes the process for streaming a Flash clip. The Flash 5
program can export a RealAudio clip, a tuned Flash Player clip in the Flash 4
format, and a SMIL file automatically. If you use Flash 5, refer to your Flash
user’s guide for instructions on exporting and tuning clips. If you are using a
version of the Flash program other than version 5, perform the following
manual export and tuning steps.

➤ To create a streaming Flash clip manually:

1. Export the Flash Player clip.

Helix Server streams only the Flash Player format (.swf), which is a
compressed version of the animation. You cannot stream the Flash source
file format (.fla). If your animation includes a continuous soundtrack,
disable the audio stream when you export the clip. Refer to the Flash user
manual for step-by-step instructions on the exporting a Flash Player clip.

Tip: If your Flash clip contains event sounds, such as button
clicks or rollover sounds, keep those sounds in your Flash
Player file, compressing them as MP3.

Note: Keep in mind that RealPlayer plays the Flash 4, 3, and 2
Player formats. It does not play clips in the Flash 5 format.
101

RealNetworks Production Guide
2. Tune the Flash Player clip.

With the Flash tuner, set the clip's streaming bit rate. This necessary step
also eliminates bandwidth spikes that can cause rebuffering. The tuner is
included in the utilities folder of the zipped HTML version of this manual.

For More Information: See “How to Download This Guide to
Your Computer” on page 11 for instructions on getting a local
copy of this guide.

3. Export the soundtrack.

If your animation includes a soundtrack, export the soundtrack as a
Windows WAV file or Macintosh QuickTime file. If exporting to
QuickTime (or any other video format), set low height and width
attributes to minimize disk space use.

4. Encode the soundtrack as streaming audio.

Encode the exported WAV or QuickTime soundtrack in the streaming
audio format you want to use. You can use RealProducer to create a
RealAudio clip that uses the file extension .rm.

5. Deliver the Flash presentation.

Transfer your clips to Helix Server. Then write the SMIL and Ram files
necessary to stream the presentation.

• Streaming a single Flash clip

If your have a single Flash clip, your Helix Server administrator can
give you the URL to use in your Web page’s hyperlink to the clip. If the
Helix Server does not use Ramgen, or you are delivering the clip
through a Web server, you need to write a Ram file.

For More Information: For more on Helix Server and Ramgen,
see “Using Ramgen for Clips on Helix Server” on page 522.
Ram files are described in “Launching RealPlayer with a Ram
File” on page 508.

• Streaming a Flash clip with another clip

If your presentation has multiple clips, you write a SMIL file that
organizes the presentation and gives the clip URLs. You next link your
Web page to the SMIL file. In its simplest form, the SMIL file gives the
full URLs to the clips and specifies that the clips play in parallel. The
102

CHAPTER 5: Flash Animation
following example is for a Flash clip that plays in parallel with a
RealAudio soundtrack:

<smil xmlns=“http://www.w3.org/2001/SMIL20/Language”>
 <body>
 <par>
 <audio src=”rtsp://helixserver.example.com:554/media/soundtrack.rm”/>
 <animation src=”rtsp://helixserver.example.com:554/media/cartoon.swf”/>
 </par>
 </body>
</smil>

You can also use SMIL to define hypertext links, create timing offsets
between clips, or add presentation information such as title, author,
copyright, and abstract. For information about SMIL, start with
Chapter 8.
103

RealNetworks Production Guide
104

P A R T
III

Par t III: WRITING MARKUP
The RealNetworks markup languages let you create clips in
addition to audio, video, and animation. With RealText, which
Chapter 6 covers, you can create timed text that displays
alongside other clips. Chapter 7 explains the RealPix markup for
streaming slideshows from still images.

C H A P T E R
6

 Chapter 6: REALTEXT MARKUP
With RealText, you can create timed text presentations that can
stream alone or in combination with other media such as audio or
video. This makes RealText a handy means for adding text to SMIL
presentations. Using RealText, you can add subtitles to a video, for
example, or provide closed-captioning. This chapter explains the
RealText markup. Appendix E beginning on page 587 provides a
reference for RealText tags and attributes.

Understanding RealText
Using any text editor, you can create a RealText clip in a text file that uses the
file extension .rt. The file includes the text you want to display, as well as the
RealText markup that describes how to display and time the text. Like a
RealVideo or Flash clip, a RealText clip has a height and width, as well as an
intrinsic duration, from a few seconds to several hours. The following are
some of the features that RealText provides:

• Font, size, and color control

The RealText markup lets you create text in many different fonts, sizes,
and colors.

• Timing control

RealText timing commands control when each paragraph, sentence, word,
or letter appears. You might display a new sentence every few seconds, as
in a video subtitle. Or you could make letters appear one at a time as if
they were being typed across the screen.

• Flowing text

Within a RealText clip, words can scroll up the screen or from side to side.
This lets you create a window of smoothly flowing text. You can even
make text loop, creating an endlessly flowing marquee.
107

RealNetworks Production Guide
• Positioning commands

With the optional positioning commands, you can control exactly where
each word appears within the RealText window.

RealText Language Support

RealText supports a number of languages, including English, Chinese,
Korean, Japanese (Kanji), and many European languages. It can stream text in
any language that can be written in one of its supported character sets, which
are listed in the section “Specifying the Character Set” on page 124. Each
character set supports at least one font, as described in “Setting the Font” on
page 127.

Note: Character set and font support is built into RealText.
Therefore, RealText does not necessarily support all character
sets and fonts supported by various Web browsers.

Text Alternatives

In addition to RealText, RealPlayer can play plain text clips (.txt) and inline
text, which is text written directly into a SMIL file. When you use plain text or
inline text, all the text displays at once, and you cannot position text blocks at
different parts of the screen, or apply styles such as bolding only to certain
words. However, plain text and inline text support a wider range of fonts and
character sets than RealText, and are well-suited to static text display. You can
use inline text to label media clips, for example, or create interactive “buttons”
through SMIL commands.

For More Information: To use plain text or inline text, refer to
“Adding Text to a SMIL Presentation” on page 225.

Structure of a RealText Clip

A RealText clip is a text file that uses the file extension .rt. At the top of the file
you write a <window> tag that can include several attributes that set overall
parameters, such as the window type, width, height, and duration. The file
ends with a </window> tag. Between these tags, you add the text that you want
to display in RealPlayer, using RealText tags and attributes to lay out and time
the text. The following example is a simple RealText file that displays a new
line of text every three seconds:
108

CHAPTER 6: RealText Markup
<window height=”250” width=”300” duration=”15” bgcolor=”yellow”>
Mary had a little lamb,

<time begin=”3”/>little lamb,

<time begin=”6”/>little lamb,

<time begin=”9”/>Mary had a little lamb

<time begin=”12”/>whose fleece was white as snow.
</window>

Rules for RealText Markup

The RealText markup is similar to SMIL, and follows the same basic rules
described in “Creating a SMIL File” on page 195. The following are the main
points in mind when writing a RealText file:

• Use lowercase characters for RealText tags and attributes.

• A tag that does not have a corresponding end tag (for example, the
tag has the end tag), closes with a forward slash, as in a
 tag, for
example.

• Attribute values must be enclosed in double quotation marks.

• Save your RealText file with the file extension .rt. Do not include spaces in
the file name. For example, you can have the file my_realtext.rt but not the
file my realtext.rt.

• Use codes to include angle brackets, ampersands, or nonbreaking spaces
as RealText display characters. See “Using Coded Characters” on page 137.

• As in HTML, you can add a comment to a RealText file like the following.
Note that the comment tag does not need to close with a slash.

<!-- This is a comment -->

RealText Bandwidth

Because a RealText clip is a simple text file, it consumes minimal bandwidth
and streams quickly to RealPlayer. RealText presentations are therefore easily
accessible to viewers with slow network connections. When combining
RealText with other clips, you need to ensure that RealText has approximately
1 Kbps of available bandwidth.

Tip: If you have a large RealText file, you can compress it with
GZIP when delivering the clip from many Web servers. For
more information, see “GZIP Encoding for Large Text Files” on
page 526.
109

RealNetworks Production Guide
For More Information: For more on bandwidth allocation, see
“Step 4: Develop a Bandwidth Strategy” on page 45.

RealText in a SMIL Presentation

You can easily combine RealText with any other clip through a SMIL file.
Chapter 8 explains the basics of SMIL. The section “Playing Clips in Parallel”
on page 251 explains how to display RealText along with other clips. You’ll
also need to understand SMIL layouts as described in Chapter 12. The section
“RealText Window Size and SMIL Region Size” on page 113 explains various
ways to coordinate the RealText window size to its SMIL region size.

Tip: To see examples of RealText displayed with other clips, get
the zipped HTML version of this guide as described in “How to
Download This Guide to Your Computer” on page 11, and view
the Sample Files page.

RealText Broadcast Application

RealText does not have to be created in a static file. A broadcast application
can capture live text, add RealText markup to it, and send it to Helix Server. A
sample broadcast application is included with the Software Development Kit
(SDK), available for download at this Web page:

http://proforma.real.com/rnforms/resources/server/realsystemsdk/
index.html

Setting RealText Window Attributes
The <window> and </window> tags that begin and end a RealText file,
respectively, set presentation attributes such as the window’s height and width
Here is an example of a <window> tag:

<window type=”marquee” duration=”2:05:00.0” underline_hyperlinks=”false”>
...all text and RealText markup...
</window>

You specify attributes in the form attribute=“value” within the <window> tag,
much as you specify HTML table attributes within the HTML <TABLE> tag. No
attributes are required for the <window> tag, however. If you do not specify an
110

CHAPTER 6: RealText Markup
attribute, the attribute's default value applies. The following table
summarizes the <window> tag attributes.

Specifying the Window Type

The <window> tag’s type=“window type” attribute sets specific properties for the
RealText clip:

<window type=”scrollingnews” ...>

Choose a window type depending on how you want to display text. Each
window type has preset default values that make it easier to create certain
types of text displays. You can create any type of RealText clip using just the
default window type of generic, however. The following are the RealText
window types:

RealText <window> Tag Attributes

Attribute Value Function Reference

bgcolor name|#RRGGBB|
transparent

Sets the window color. page 113

crawlrate pixels_per _second Sets the horizontal text speed. page 117

duration hh:mm:ss.xy Specifies presentation length. page 114

extraspaces use|ignore Recognizes or ignores extra
spaces in text.

page 119

height pixel Sets the window pixel height. page 113

link name|#RRGGBB Specifies the hyperlink color. page 117

loop false|true Turns text looping on or off. page 118

scrollrate pixels_per _second Sets the vertical text speed. page 117

type generic|tickertape|
marquee|scrollingnews|
teleprompter

Sets the window type. page 111

underline
_hyperlinks

false|true Determines whether hyperlinks
are underlined.

page 117

version 1.0|1.2|1.4|1.5 Specifies RealText version.
Required for some character sets.

page 116

width pixels Sets the window pixel width. page 113

wordwrap false|true Turns word wrap on or off. page 118
111

RealNetworks Production Guide
• generic

This is the default window type. You can use the generic window type to
create any type of RealText clip based on the other attributes you include
in the <window> tag.

• scrollingnews

A scrollingnews window scrolls text upward at a specified rate for the
entire presentation. The text initially appears at the top of the window.

• teleprompter

A teleprompter window fills the display area with text starting at the top
of the screen. As more timed text displays, the new text appears at the
bottom of the screen and pushes older text up. The text does not scroll
smoothly as in a scrollingnews window, though.

• marquee

In a marquee window, text crawls from right to left and can loop. Text is
centered vertically within the window.

• tickertape

A tickertape windiw is like a marquee window, but text displays at the
window's top or bottom edge, rather than in the center.

Window Type Default Values

Each window type sets a number of default values for the RealText clip. The
following table lists the attribute default values that differ based on the choice
of window type. Keep in mind that you can change any default value for any
window type through the <window> tag. If you want a marquee window to be
320 pixels wide instead of 500 pixels, for example, you add width=“320” to the
<window> tag to override the window type’s default width value.

Default Values for RealText Window Types

Value generic scrollingnews teleprompter marquee tickertape

width in pixels (page 113) 320 320 320 500 500

height in pixels (page 113) 180 180 180 30 30

background (page 113) white white white white black

horizontal crawl rate in
pixels per second (page
117)

0 0 0 20 20

 (Table Page 1 of 2)
112

CHAPTER 6: RealText Markup
Setting the Window Size and Color

The width and height attributes determine the RealText window’s width and
height in pixels, respectively. The bgcolor attribute determines the window's
background color. “Specifying RealText Color Values” on page 131 explains
RealText color values. Here is an example that sets a window size and color:

<window width=”400” height=”225” bgcolor=”blue”...>

For More Information: Default values for size and background
color are listed in the table “Default Values for RealText
Window Types” on page 112.

Creating a Transparent Window Background

Using the rn:backgroundOpacity attribute in SMIL, you can turn the RealText
window’s background color fully transparent or semi-transparent, which is
useful when overlaying a video with RealText subtitles. Within the RealText
file, you define an opaque color, such as black or white, as the value of the
<window> tag’s bgcolor attribute. In your SMIL file, you then specify a
percentage value for rn:backgroundOpacity.

For More Information: For more information about
rn:backgroundOpacity, see “Creating Transparency in a Clip’s
Background Color” on page 221. For an example of using
SMIL to display different RealText subtitles based on viewer
language preferences, see “Subtitles and HTML Pages in
Different Languages” on page 460.

RealText Window Size and SMIL Region Size

When you add RealText to a SMIL presentation, you display your RealText clip
in a SMIL region. For best results, create a SMIL region that is the same height
and width as the RealText clip. Displaying a RealText clip in a SMIL region
that is larger or smaller than the clip may enlarge or shrink the text,

vertical scroll rate in
pixels per second (page
117)

0 10 0 0 0

text looping (page 118) no no no yes yes

Default Values for RealText Window Types (continued)

Value generic scrollingnews teleprompter marquee tickertape

 (Table Page 2 of 2)
113

RealNetworks Production Guide
depending on how you set the <region> tag’s fit attribute. The sections below
explain which fit values are best to use.

Note that enlarging or shrinking a RealText clip through SMIL does not affect
line breaks. Line breaks are determined by the RealText window’s width, font,
and font size. You could place a RealText window that is 200 pixels wide in a
SMIL region that is 150 pixels wide, for example, and scale the clip’s width
down by adding fit= “fill” to the SMIL <region> tag. This simply makes all the
text smaller. It does not cause lines to break at different places within the text.

For More Information: SMIL regions are described in “Playback
Regions” on page 270. The section “Fitting Clips to Regions”
on page 303 explains the <region> tag’s fit attribute. RealText
word wrapping is described in “Wrapping Text to New Lines”
on page 118.

When a SMIL Region is Larger than the RealText Clip

When the SMIL region is larger than the RealText clip, the default value
fit=“hidden” is recommended for the <region> tag. This keeps the RealText clip
as its specified size. You can then use a registration point, as described in
“Positioning Clips in Regions” on page 297, to position the clip within the
region. The registration point might center the clip in the region, for example.

If you want to scale the RealText clip larger, using fit=“meet” in the <region> tag
typically gives the best results because it preserves the clip’s aspect ratio. This
scales the text larger but maintains the relative letter spacing. You can use
fit=“fill” to make the RealText clip the same size as the region, but distortion
in letter spacing may make the clip unreadable if the region has a markedly
different width-to-height ratio than the clip.

When a SMIL Region is Smaller than the RealText Clip

When the SMIL region is smaller than the RealText clip, the default value
fit=“hidden” in the <region> tag may prevent some text from displaying. The
value fit=“meet” is generally the best choice, because it scales the clip smaller to
fit completely inside the region while preserving the relative letter spacing.
When displaying RealText in a smaller region, though, you need to be careful
to keep the text from scaling down to an unreadable size.

Setting the Clip Duration

The duration attribute specifies how long the RealText clip plays. The default is
60 seconds. RealText uses only the “normal play time” timing values of
114

CHAPTER 6: RealText Markup
hh:mm:ss.xy, which are described in “Using the Normal Play Time Format” on
page 316. In this timing method, only the ss field is required. For example, the
following duration attributes make the clip last 90 seconds:

<window duration=”90” ...>

5 and 1/2 minutes:

<window duration=”5:30” ...>

and 1 hour, 33 minutes, and 15 seconds:

<window duration=”1:33:15” ...>

RealText Durations and SMIL Durations

When you put RealText in a SMIL presentation, SMIL timing values can
override the duration defined in the RealText clip. Suppose a RealText clip
named marquee.rt has a duration of three minutes:

<window duration=”3:00.0” ...>

If you put this clip into a SMIL presentation with the following SMIL clip
source tag, the dur=“2min”attribute tells RealPlayer to stop playing this clip
after two minutes regardless of the clip’s internal timeline:

<textstream src=”rtsp://helixserver.example.com/marquee.rt dur=”2min” .../>

If the SMIL duration is longer than the RealText duration, a fill attribute can
specify how RealPlayer treats the clip once it has stopped playing:

<textstream src=”rtsp://helixserver.example.com/marquee.rt dur=”4min”
fill=“freeze”/>

For More Information: For more on the SMIL fill attribute, see
“Setting a Fill” on page 329.

Tips for Setting RealText Clip Durations

• When you work with both SMIL and RealText, be careful not to confuse
the different duration attributes. In RealText, the duration attribute must
be duration, whereas in SMIL it must be dur.

• RealText uses only the normal play time format (hh:mm:ss.xy) for setting
time values. It cannot use SMIL timing shorthand values such as “3min”.

• If your RealText clip stops before all text has displayed, the duration time
is probably set too low. To help prevent this problem, set a high duration
when you start writing your RealText markup. Then set the final duration
time when you have finished defining the RealText markup.
115

RealNetworks Production Guide
• The final duration should be slightly higher than the time it takes to
display all the text. If all text displays within two minutes, for example, set
a duration of two minutes and five seconds.

• Setting a duration much higher than the time it takes all text to display
may unnecessarily delay clips that play after the RealText clip in a SMIL
sequence, and can make it difficult for viewers to use the RealPlayer
position slider to search for specific parts of the RealText clip.

• The duration time you set is reflected in RealPlayer. If you set a duration
of five minutes, for instance, the RealPlayer status bar lists the clip length
as 5:00.0 and the RealPlayer position slider takes five minutes to travel
from left to right.

• Text is not erased at the end of a RealText clip’s duration. The final text
remains in the RealText window unless you erase the text with a <clear/>
tag, or the text moves out of the window because you have set a scrollrate
or a crawlrate .

For More Information: See “Clearing Text from the Window” on
page 122 and “Setting a Scroll Rate or a Crawl Rate” on page
117.

Adding a Version Number

The <window> tag can include a version number, as shown in this example:

<window version="1.5"...>

You typically do not have to specify a version number when using RealText in
English. Properly displaying languages other than English may require that
you specify a version number explicitly in the <window> tag, however. This
chapter tells you when a version number is required to use a specific feature.
The following paragraphs summarize the features that require you to add
version numbers:

• version=“1.2”

This RealText version provides support for the mac-roman character set,
and changes the default character set from us-ascii to iso-8859-1. This
version requires RealPlayer 7 or later, so RealPlayer G2 will autoupdate to
the latest version of RealPlayer before playing the clip.
116

CHAPTER 6: RealText Markup
• version=“1.4”

This RealText version provides support for the iso-2022-kr character set
and the Korean language. This version requires RealPlayer 7 or later, so
RealPlayer G2 will autoupdate to the latest version of RealPlayer before
playing the clip.

• version=“1.5”

This RealText version supports hyperlinks in the format protocol:path, as
explained in “Issuing RealPlayer Commands” on page 137. This version
requires RealPlayer 8 or later, so RealPlayer G2 and RealPlayer 7 will
autoupdate to the latest version of RealPlayer before playing the clip.

Tip: Because newer versions of RealText encompass all features
from previous versions, you can always specify a higher version
than that required for a feature. If a feature requires RealText
version 1.2, for example, you can use 1.5 as the version number.

Specifying Hyperlink Appearance

The underline_hyperlinks=“false|true” attribute determines whether hyperlinks
are underlined. The default is true. The link=“color” attribute, which defaults to
blue, sets the color of hyperlinks within the text. Here is an example:

<window underline_hyperlinks=“false” link=”red” ...>

For More Information: See “Specifying RealText Color Values”
on page 131 for color options.

Controlling Text Flow

As described in the following sections, several <window> tag attributes
(scrollrate , crawlrate , wordwrap, loop, and extraspaces) affect how text displays in
the RealText clip.

Setting a Scroll Rate or a Crawl Rate

The scrollrate attribute sets the number of pixels per second that the text
scrolls from the bottom of the window to the top for the duration of the clip.
It has no effect on tickertape and marquee windows. Here is an example:

<window scrollrate=”25” ...>
117

RealNetworks Production Guide
The crawlrate attribute specifies the number of pixels per second that the text
moves horizontally from right to left for the duration of the clip. Here is an
example:

<window crawlrate=”40” ...>

Tip: A RealText clip should not use both scrollrate and
crawlrate. For best results, use a scrollrate or a crawlrate under
30. The best values are 25, 20, 10, 8, 5, 4, 2, and 1. For rates faster
than 30, use multiples of 20 or 25, such as 40, 50, 60, 75, 80, and
so on.

For More Information: The table “Default Values for RealText
Window Types” on page 112 lists the default values for
scrollrate and crawlrate in the standard window types.

Wrapping Text to New Lines

The wordwrap=“false|true” attribute, which defaults to true, specifies whether
word wrap is performed. When word wrap is on, text lines longer than the
specified window width wrap to the following line. If it is off, long lines are
truncated by the window border. This attribute has no effect for windows that
have horizontal text motion, such as a marquee window.

Looping Text

The loop=“false|true” attribute is available only in tickertape and marquee
windows, which have horizontal “crawling” motion. In these window types,
the loop attribute defaults to true, which tells RealPlayer to redisplay (“loop”)
text under these circumstances:

• In a clip that does not use <time begin=“...”> tags to set begin times on text
blocks, looping occurs if all text has moved out of the window but the
clip’s duration has not expired. If the duration is two minutes but all text
has moved out the window after one minute, for example, the text begins
again.

• In a clip that uses <time begin=“...”> tags to set begin times, text blocks
loop if they have scrolled out of the window and the next text block’s
begin time has not elapsed. For example, consider this markup:

...first text block...<time begin="1:00.0"><clear/>
...second text block...
118

CHAPTER 6: RealText Markup
In this case, the first text block loops as necessary for one minute. At that
time, the <clear/> tag erases the window and the
 tag starts the
second text block at the window’s right-hand side.

For More Information: For information on timing and erasing
text, see “Timing and Positioning Text” on page 119. The

tag is described in “Adding Space Between Text Blocks” on
page 132.

• In a RealText broadcast, text loops as necessary until new text arrives. If
the text is looping as the new text arrives, the new text displays as soon as
the old text has moved out of the window. The new text then becomes
part of the loop.

Ignoring Extra Spaces

When set to its default value of use , the extraspaces=“use|ignore” attribute
makes RealText recognize all blank spaces between text chunks and markup
tags. If three spaces occur between two words in the RealText file, for example,
RealPlayer displays all three spaces. It treats each carriage return and tab as a
space.

If you specify extraspaces=“ignore”, RealPlayer treats spaces, tabs, line feeds,
and carriage returns as does a Web browser, except when they are between the
<pre>...</pre> tags. When spaces or carriage returns occur contiguously in the
text, RealPlayer interprets them as a single space, no matter how many of them
are present. So in this case, three contiguous spaces display as one space in
RealPlayer.

For More Information: The <pre>...</pre> tags are described in
the section “Preformatting Text” on page 133

Timing and Positioning Text
The following sections explain the RealText tags you can use between the
<window> and </window> tags to control when and where text appears within
119

RealNetworks Production Guide
the RealText window. The following table summarizes the RealText timing
and positioning tags.

Controlling When Text Appears and Disappears

The <time/> tag controls the RealText presentation timeline by specifying
when text blocks appear or disappear. The <time/> tag is useful primarily in
RealText clips in which text does not scroll or crawl across the screen. In these
clips, RealPlayer displays all text as quickly as it can if you do not time the text
with <time/> tag.

The <time/> tag can have two attributes, begin and end. You can use one or
both attributes in each <time/> tag. Each attribute specifies a time when the
text appears or disappears, respectively. As with the <window> tag’s duration
attribute, a <time/> tag specifies a time in the “normal play time” format:

<time begin=“hh:mm:ss.xy”/>
<time end=“hh:mm:ss.xy”/>

In the following sample text block, the first phrase appears at the start of the
RealText presentation. The subsequent text blocks appear at three seconds
into the timeline, and six seconds into the timeline, respectively:

Mary had a little lamb, <time begin=”3”/>little lamb, <time begin=”6”/>little
lamb.

For More Information: See “Using the Normal Play Time
Format” on page 316 for more on <begin> tag timing values.

RealText Time and Position Tags

Tag Attributes Function Reference

<clear/> (none) Clears all text. page 122

<pos/> x=“pixels”|y=“pixels” Positions text. page 122

<required>...
</required>

(none) Ensures that text is delivered. page 123

<time/> begin=“hh:mm:ss.xy”|
end=“hh:mm:ss.xy”

Sets time when text appears or
disappears.

page 120

<tl>...</tl> color=”name|#RRGGBB” Puts text at bottom of ticker. page 123

<tu>...</tu> color=”name|#RRGGBB” Places text at top of ticker. page 123
120

CHAPTER 6: RealText Markup
Using an End Time

Text with an end time is erased when the specified end value is reached.
Otherwise it stays active until the presentation ends or the entire window is
erased with <clear/>. In the following example, text blocks begin at different
times, but all end at the same time. Note that just as with a begin time, an end
time must appear before the text block in the file:

<time end=”25”/><time begin=”5”/>This text starts to display at 5 seconds.
<time begin=”10”/>A new line appears each additional 5 seconds.
<time begin=”15”/>But all this text disappears ...
<time begin=”20”/>at 25 seconds into the clip.

You can also combine the begin and end attributes in a single <time/> tag as
shown here:

<time begin=”23” end=”55.5”/>This text displays 23 seconds into the presentation
and disappears at 55.5 seconds.

It’s important to note that text following a <time/> tag has the specified begin
or end value until a new value is given. Therefore, once you specify an end time
for a text block, you must specify an end time for all following blocks. For
example, the following text would not display properly:

<time begin=”23” end=”55.5”/>Display at 23 seconds in.
<time begin=”56”/>Display at 56 seconds in.

Because the second line in the preceding example does not include an end
time, the previous end time of 55.5 still applies. The second line cannot be
displayed, however, because its begin time is later than its end time.

Tips for Using <time/> Tags

• The <time/> tags are not necessary in a window with a scrollrate or
crawlrate unless you want to delay text, have it become visible after it has
moved into the window, or have it disappear before it moves out of the
window. See also “Looping Text” on page 118 for information on how
<time/> tags can affect text looping.

• To freeze text on the screen after the clip’s duration has elapsed, do not set
an end time. Or, have the end time exceed the window’s duration as shown
in this example:

<window duration=”30” ...>
 ...some text elements...
 <time begin=”25” end=”31”/>Text that stays frozen onscreen.
</window>
121

RealNetworks Production Guide
• To replace a line of text with a new line every few seconds (as in video
subtitles), do not use end times. For each new line of text, set the
appropriate begin time followed by a <clear/> tag, as described below.

Clearing Text from the Window

The <clear/> tag removes all text from the window. The text that follows this
tag then displays at the window's normal starting point, which is typically the
window’s top or right edge, unless you position the text elsewhere. You can
add <clear/> after <time begin=”...”/> to erase text before displaying new text.
This is often an easier method of removing text than using <time end=“...”/>
tags. In the following example, each new line erases the preceding line:

<time begin=”5”/>This line displays at 5 seconds.
<time begin=”10”/><clear/>This line erases the previous line at 10 seconds.
<time begin=”15”/><clear/>This line erases the previous line at 15 seconds.
<time begin=”20”/><clear/>This line erases the previous line at 20 seconds.

A <clear/> tag removes all preceding text, even text that has an end time that
has not yet elapsed. In the following example, the second line of text is set to
end at 20 seconds. However, the <clear/> tag appears at 15 seconds into the
presentation and clears this line, eliminating the end time for all following
text:

<time begin=”5”/>They all lived happily.
<time begin=”10” time end=”20”/>And so our story ends.
<time begin=”15”/><clear/>Goodbye!

Note: The <clear/> tag does not reset text appearance. For
example, if text appears bolded before the <clear/> tag, it
remains bolded after the <clear/> tag.

Positioning Text in a Window

These <pos/> tag can position text anywhere in the RealText window. You can
use its x attribute for horizontal positioning, and its y attribute for vertical
positioning. Each attribute takes a value in pixels, as shown in these examples:

<pos x=“10”/>
<pos y=“25”/>

A <pos y=”pixels”/> tag moves the upper, left corner of the subsequent text
block the specified number of pixels down from the window’s top edge. A <pos

x=”pixels”/> tag indents the text block the specified number of pixels in
122

CHAPTER 6: RealText Markup
addition to the two-pixel default padding that applies to all text blocks. You
can combine both tags in a single tag like this:

<pos x=”10” y=”25”/>

Note: These tags work only if scrollrate and crawlrate are both 0
(zero). For more on these attributes, see “Setting a Scroll Rate
or a Crawl Rate” on page 117.

Aligning Text in a Tickertape Window

Th <tu>...</tu> and <tl>...</tl> tag sets function only with tickertape windows.
They display the enclosed text at the window's upper (<tu>...</tu>) or lower
(<tu>...</tu>) edge. Optionally, they can include a color attribute that specifies
the color for the text, as shown in this example:

<tu color=“blue”>...text to display at tickertape window’s upper edge...</tu>
<tl color=“yellow”>...text to display at tickertape window’s lower edge...</tl>

When a tag specifies a color with the color attribute, the color applies to text
enclosed by all subsequent tags of that type until another tag of that type
changes the color. However, color specified for <tu> elements does not affect
color for <tl> elements, and vice versa. The default color for <tu> elements is
white, the default for <tl> elements is green.

For More Information: Refer to “Specifying RealText Color
Values” on page 131 for information about choosing colors.

Ensuring Text Delivery

Use the <required> and </required> tags to enclose text that must be delivered
to RealPlayer under any circumstance. During extremely adverse network
conditions, Helix Server will halt the presentation if necessary rather than
drop the text. You can use these tags sparingly, though, because Helix Server
normally ensures that very little data loss occurs in transmission.

Note: Although Helix Server provides reliable streaming,
packets not marked as required may be lost occasionally. If a
block of text does not get through, RealPlayer displays a red
ellipsis (...) to indicate missing text.
123

RealNetworks Production Guide
Specifying Languages, Fonts, and Text Colors
The RealText tag controls the text font and color. Because it also
specifies the character set, it determines which languages you can write in. As
shown in the following example, the tag can take multiple attributes,
and it always uses an end tag:

...text...

Multiple tags can also be nested to turn various font features on and
off:

...turn on font attribute “A”...
...turn on font attribute “B”...
...turn off font attribute “B”...
...turn off font attribute “A”...

The following table summarizes the RealText tag attributes.

Specifying the Character Set

With the tag’s charset attribute, you can control the character set used
to display the text. You do not need to specify the character set explicitly to
write text in English. However, you may need to specify the character set to
write text in other supported languages. You can set the character set as well as
the font face immediately after the <window> tag within a RealText file, as
shown in the following example:

RealText Tag Attributes

Attribute Value Function Reference

bgcolor name|#RRGGBB Sets a background color. page 130

charset us-ascii|iso-8859-1|
mac-roman|x-sjis|
gb2312|big5|iso-2022-kr

Specifies character set
used to display text.

page 124

color name|#RRGGBB Controls font color. page 130

face (see font tables) Sets the text face. page 127

size -2|-1|+0|+1|+2|+3|+4
or
1|2|3|4|5|6|7

Sets the font size. page 129
124

CHAPTER 6: RealText Markup
<window version=”1.4”...>

...Korean text that uses the iso-2022-kr character set and Batang font...

</window>

You can also use multiple tags to change character sets within a
RealText file and display text in different languages:

...Korean text that uses the iso-2022-kr character set and Batang font...

...Kanji text that uses the x-sjis character set and Osaka font...

It is important to note that RealText always uses its specified character set, not
the default character set of the computer playing the clip. In RealText version
1.2 and higher, the default character set is iso-8859-1. To display Korean text
on a machine that uses the iso-2022-kr character set by default, for instance,
you must explicitly set charset=”iso-2022-kr” in the RealText <window> tag. If
you do not, RealText will use its default iso-8859-1 character set, even though
iso-2022-kr is the machine’s default.

Note: If the computer does not recognize the character set
specified in the RealText clip, it displays the text in its default
character set. The result is typically unreadable.

For More Information: As noted in the following sections, using
some character sets requires you to include a version number
in the <window> tag. For more on version numbers, see “Adding
a Version Number” on page 116.

us-ascii

The us-ascii character set is the default character set used with most RealText
fonts when no version number is specified in the <window> tag.

iso-8859-1

The iso-8859-1 character set is identical to us-ascii, but includes support for
accented characters (upper 128 characters) used in many European languages.
This is the default character set used when you specify version=”1.2” or higher
in the <window> tag. Use it when writing accented European languages on a
125

RealNetworks Production Guide
Windows or Unix computer. You can represent the following languages with
the iso-8859-1 character set:

Note: The ISO-8859 standard specifies several additional
character sets, such as iso-8859-2 and iso-8859-3. RealText
supports only iso-8859-1, however, meaning that Cyrillic,
Arabic, Greek, Hebrew, and several Eastern European
languages are not supported in RealText.

mac-roman

Use the mac-roman character set when writing in an accented European
language on a Macintosh computer. Using this character set ensures that
marks such as umlauts (for example, “ü”) display properly when the RealText
clip plays on a Windows or Unix computer. Use version=“1.2” or higher in the
<window> tag to handle this character set correctly.

Note: You do not need to use the mac-roman character set when
writing in English. When writing in accented languages on a
Windows or Unix machine, use the iso-8859-1 character set
instead.

x-sjis

The x-sjis character set is for Kanji and the Osaka font. Use version=“1.2” or
higher in the <window> tag to handle this character set correctly.

gb2312

The gb2312 character set is for Simplified Chinese.

big5

The big5 character set is for Traditional Chinese.

iso-2022-kr

The iso-2022-kr character set is for Korean. Use version=“1.4” or higher in the
<window> tag to handle Korean text correctly.

Afrikaans Basque Catalan Danish Dutch English

Faeroese Finnish French Galician German Icelandic

Irish Italian Norwegian Portuguese Spanish Swedish
126

CHAPTER 6: RealText Markup
Setting the Font

This tag attribute face=“font name” controls the font use. You can use
any number of fonts in the same RealText clip. When switching fonts, be sure
to turn off the preceding font with a tag, as shown in this example:

...Text in the Arial font...

...Text in the Garamond font...

Font faces correspond to character sets as described in the section “Specifying
the Character Set” on page 124. For non-Western fonts, you must specify the
correct character set for the font to display properly. If you specify no font,
RealText uses the Times New Roman or Times font regardless of the character
set specified.

English and European Language Fonts

When writing in English or European languages, use a font name from the
“Windows Font Name” column of the following table, which lists fonts that
use the us-ascii or iso-8859-1 character set. If the specified font isn’t available
on a Macintosh or Unix computer, RealText uses a system font as indicated in
the table below. For example, RealPlayer on a Macintosh displays text in
Courier if the Algerian font is not available. The notation “(always)” indicates
cases where RealText always defaults to a system font. For example, the
Fixedsys font always displays as Courier on a Macintosh.

RealText Font Support for us-ascii and iso-8859-1 Character Sets

Windows Font Name
Macintosh Default
if Font not Available

Unix Default
if Font not Available

Algerian Courier Courier

Arial Helvetica Helvetica

Arial Black Helvetica Helvetica

Arial Narrow Helvetica Helvetica

Arial Rounded Mt Bold Helvetica Helvetica

Book Antiqua Helvetica Helvetica

Bookman Old Style Helvetica Helvetica

Braggadocio Helvetica Helvetica
 (Table Page 1 of 2)
127

RealNetworks Production Guide
Britannic Bold Helvetica Helvetica

Brush Script Times Times

Century Gothic Helvetica Helvetica

Century Schoolbook Helvetica Helvetica

Colonna Mt Times Times

Comic Sans Ms Times Times

Courier New Courier Courier

Desdemona Helvetica Helvetica

Fixedsys Courier (always) Courier

Footlight Mt Light Helvetica Helvetica

Garamond Times Times

Haettenschweiler Helvetica Helvetica

Helvetica (Arial is used if
Helvetica is not found.)

Helvetica Helvetica

Impact Helvetica Helvetica

Kino Mt Times Times

Matura Mt Script Capitals Times Times

Modern Helvetica Helvetica

Ms Dialog Times Times

Ms Dialog Light Times Times

Ms Linedraw Helvetica Helvetica

Ms Sans Serif Helvetica Helvetica

Ms Serif Helvetica Helvetica

Ms Systemex Times Times

Playbill Times Times

Small Fonts Times Times

System Geneva (always) Times

Terminal Geneva Times

Times New Roman Times (always) Times

Verdana Helvetica Helvetica

Wide Latin Helvetica Helvetica

RealText Font Support for us-ascii and iso-8859-1 Character Sets

Windows Font Name
Macintosh Default
if Font not Available

Unix Default
if Font not Available

 (Table Page 2 of 2)
128

CHAPTER 6: RealText Markup
Tip: A Macintosh that has Microsoft Internet Explorer 4.0 or
later installed should have most of the Windows fonts.

Asian Language Fonts

RealText also supports the following fonts that use character sets other than
us-ascii and iso-8859-1.

Note: Korean and Japanese are supported in RealPlayer for
Windows and Macintosh, but not for Unix.

Setting the Text Size

The tag attribute size=“n” lets you control the font size, as shown in this
example:

...text that is one size larger...

RealText Font Support for Non-Western Character Sets

Font Name Characters RealText Font Face Tag charset

AppleGothic Korean iso-2022-kr

Batang Korean iso-2022-kr

BatangChe Korean iso-2022-kr

Gothic Korean iso-2022-kr

Gulim Korean iso-2022-kr

GulimChe Korean iso-2022-kr

Osaka Kanji x-sjis

Seoul Korean iso-2022-kr

Simplified
Chinese

(The face name displays as gibberish
without the gb2312 character set.)

gb2312

Traditional
Chinese

(The face name displays as gibberish
without the big5 character set.)

big5
129

RealNetworks Production Guide
You can use relative sizes or absolute sizes as shown in the table below. This
table also lists the height in pixels for each size. The pixel sizes are for reference
only. You cannot specify a pixel size directly in RealText.

Note: You can also specify relative sizes smaller than -2 or
larger than +4, but they are treated as -2 and +4, respectively.

Controlling Text Colors

Two attributes of the tag, color and bgcolor, let you set the color for the
text letters, and the background against which the text appears. The section
“Setting the Window Size and Color” on page 113 explains how to set the
RealText window’s background color.

Setting Text Letter Colors

The color attribute of the tag lets you control the text color. It has no
effect on tickertape windows because the <tu> and <tl> tags, which are
described in “Aligning Text in a Tickertape Window” on page 123, set the
tickertape text colors. The following example shows the text color set to red:

...red text...

Creating Text Background Colors

Use the bgcolor attribute to the tag to set the text background color.
The default background color for text is ”transparent” , making the text
background the same color as the window. The following example sets the text
background to yellow:

...text with yellow background...

RealText Font Sizes

Relative Size Absolute Size Pixel Size Reference

-2 1 12 pixels

-1 2 14 pixels

+0 (default) 3 16 pixels

+1 4 20 pixels

+2 5 24 pixels

+3 6 36 pixels

+4 7 48 pixels
130

CHAPTER 6: RealText Markup
Note that the text background color is independent of the window
background color. If the window background color is blue, for example, and
the text background color is yellow, a stripe of yellow appears in front of the
blue window wherever the affected text displays. Within that yellow stripe, the
text appears in the color set by the color attribute.

Specifying RealText Color Values

For RealText window backgrounds and fonts, you can use red/green/blue
hexadecimal values (#RRGGBB), as well as the following color names, listed
here with their corresponding hexadecimal values:

Tip: Appendix C provides background on hexadecimal color
values. Note, though, that RealText does not support RGB
color values used with SMIL.

Using Transparency as a Color

For text backgrounds, you can use bgcolor=”transparent”. This is the default for
text backgrounds, meaning that the words following the tag do not have a
colored rectangle drawn behind them, so the window background color shows
around the letters. This lets you draw text over previous text (using the <pos/>
tags) without “erasing” the previous text.

Controlling Text Layout and Appearance
The following tags let you lay out text in the RealText clip. Many of these tags
are similar to HTML tags, and are provided for compatibility. However, unlike
in HTML, RealText tags are case sensitive and a closing tag is always required.
You cannot use a <p> tag without a </p> tag, for example, or use capital letters

white (#FFFFFF) silver (#C0C0C0) gray (#808080) black (#000000)

yellow (#FFFF00) fuchsia (#FF00FF) red (#FF0000) maroon (#800000)

lime (#00FF00) olive (#808000) green (#008000) purple (#800080)

aqua (#00FFFF) teal (#008080) blue (#0000FF) navy (#000080)
131

RealNetworks Production Guide
as in <P> and </P>. The following table summarizes the RealText layout and
appearance tags.

Adding Space Between Text Blocks

The following tags add space between text blocks. If text flows across the
screen horizontally, however, line breaks are not created.

<p>...</p>

The <p>...</p> tags turn the enclosed text into a pargraph. In tickertape and
marquee windows, it causes the text that follows it to display at the window’s
right edge. In all other window types, the <p> and </p> each cause the next text
block to display two lines down.

The
 tag adds space between text. In tickertape and marquee windows, it
causes the text that follows it to display at the window’s right edge. In all other
window types, this tag causes the text that follows to display on the next line.

RealText Layout and Apperance Tags

Tag Function Reference

... Bolds the enclosed text. page 134

 Creates a line break. page 132

<center>...</center> Centers the enclosed text. page 133

<hr/> Acts like two
 tags. page 134

<i>...</i> Italicizes the enclosed text. page 134

... Acts like a
 tag. page 134

... Indents text, but does not number it. page 133

<p>...</p> Creates a text paragraph. page 132

<pre>...</pre> Displays text in a monospace font and preserves
extra spaces. Works the same as in HTML.

page 133

<s>...</s> Strikes through the enclosed text. page 134

<u>...</u> Underlines the enclosed text. page 134

... Indents text, but does not add bullets to it. page 134
132

CHAPTER 6: RealText Markup
Centering Text

The <center>...</center> tags center the enclosed text. These tags behave the
same as HTML centering tags, but they have no effect in windows with
horizontal motion, such as tickertape and marquee windows. The <center> tag
forces a line break if and only if a line break caused by a tag such as
, <p>,
or <hr/> does not immediately precede it. The </center> tag always causes a line
break.

Note: RealText does not center text until it has determined the
line length. In rare instances, one streamed packet may contain
the first part of the line while another packet received several
seconds later contains the end of the line. In this case, the first
part displays flush left, and the entire line is centered and
redisplayed when the second packet arrives.

Preformatting Text

The <pre>...</pre> tags work the same as in HTML. Text tagged with <pre>
uses the Courier font at the current size. To change the font size, precede the
preformatted block with a tag. Line breaks, spaces, and tabs are
preserved, with tabs defaulting to 64 pixels for 16 point text (the normal point
size). Tab spaces are determined by dividing the text height by 2, then
multiplying by 8.

For More Information: For information on text heights, see the
table “RealText Font Sizes” on page 130. See also “Ignoring
Extra Spaces” on page 119.

Using HTML-Compatible Tags

The following RealText tags are provided for HTML compatibility, allowing
you to convert HTML to RealText more easily, and vice versa. These tags do
not function the same in RealText as they do in HTML, however.

...

The ... tags are for compatibility with HTML lists. Text between these
tags is indented, but not numbered.
133

RealNetworks Production Guide
...

The ... tags are for compatibility with HTML lists. Text between these
tags is indented, but not bulleted.

...

The ... tags are for compatibility with HTML lists. They act like a

 tag.

<hr/>

The <hr/> tag is for compatibility with HTML horizontal rules. It acts like two

 tags.

Emphasizing Text

The following RealText tags let you add emphasis to text.

...

The ... tags display the enclosed text bolded.

<i>...</i>

The <i>...</i> tags display the enclosed text italicized.

<s>...</s>

The <s>... tags strike through the enclosed text.

<u>...</u>

The <u>...</u> tags display the enclosed text underlined.
134

CHAPTER 6: RealText Markup
Creating Links and Issuing Commands
The following sections describe tags you can use to launch URLs through
RealText. You can also use tags to issue RealPlayer commands such as Pause
and Play. The following table summarizes link and command syntax.

Tip: Text in a link uses the color specified in the link attribute
of the <window> tag. The link is underlined unless the <window>
tag includes underline_hyperlinks=”false”.

For More Information: SMIL files can also define hypertext links
that may override the link you set here. For more information,
see Chapter 15.

Creating a Mail Link

This tag turns the enclosed text into an e-mail hyperlink:

...

When the viewer clicks the link, RealText opens the viewer’s default mail
application. Use an address in the standard form, such as name@company.com.
In most cases, the e-mail application opens a new message with the defined
address in the “to” line.

Opening Media or HTML Pages

The following RealText tag turns the text enclosed between <a href...> and
 into a hyperlink that opens an HTML page or a media clip:

...

RealText <a> Tag Attributes

Attribute Value Function Reference

href=“command”
target=“_player”

command:seek(time)|
command:pause()|
command:play()

Issues a
command.

page 137

href=“command:openwindow()” name|URL|
zoomlevel

Opens new
windows

page 384

href=“mailto:address” email_address Opens e-mail
message.

page 135

href=“URL” target=”_player” Links to URL. page 135
135

RealNetworks Production Guide
The specified URL should begin with a protocol designation such as http:// or
rtsp://. The optional target=”_player” attribute launches the new stream in the
media playback pane. If you do not use the target attribute, or you specify
target=”_browser”, the linked URL opens in RealPlayer’s media browser pane,
or in the viewer’s default Web browser with earlier versions of RealPlayer.

Example 1: Opening a Streaming Media URL

The following example launches a new SMIL Presentation in RealPlayer,
replacing the currently playing presentation:

Play Next

You can also open a link in a new media window that pops up above the media
playback pane. This lets you keep navigation information visible in the media
playback pane, for example, while content plays in a new window. For more
about this, see “Opening a Media Playback Window with a Clip Link” on page
384.

Example 2: Opening an HTML Page

This example opens a URL in the media browser pane of RealPlayer, or in the
viewer’s default Web browser with earlier versions of RealPlayer:

Visit RealGuide

You can also specify URLs relative to the location of the RealText source file.
For example, the link ... opens the file more.htm in the
same directory as the RealText file. Relative links follow the standard HTML
directory syntax.

Note: With RealOne Player or later, you cannot target the
related info pane or a secondary browsing window.

Example 3: Opening a URL in the Form protocol:path

If you include version=“1.5” (or higher if using a newer version of RealText) in
the <window> tag, you can open a URL in the form protocol:path instead of
protocol://path. Protocols using this format include those for Telnet and AOL
Instant Messenger. For example, here is a RealText link that launches AOL
Instant Messenger:

<window version=”1.5”...>
...Send Me an Instant Message...
</window>
136

CHAPTER 6: RealText Markup
Issuing RealPlayer Commands

The following tag makes the enclosed text a hyperlink that, when clicked,
executes a RealPlayer command:

...

The commands are case-sensitive and must be enclosed in double quotes. The
target=”_player” attribute is required.

Seeking Into a Presentation

The following command instructs RealPlayer to seek to the specified time in
the current text stream:

Seek

For example, the following instructs RealPlayer to seek to 1:35.4 in the stream:

Seek

Pausing a Presentation

When clicked, the following link causes RealPlayer to pause the stream:

Pause

Resuming Playback

Clicking the next link causes RealPlayer to begin or resume playing the stream:

Resume

Using Coded Characters
The following table lists the character codes you can include in a RealText
source file. Codes begin with an ampersand (“&”) and end with a semicolon
(“;”). RealText interprets these characters the same way as popular Web
browsers.

RealText Coded Character Set

Code Displays as

< <

> >

& &
 (Table Page 1 of 2)
137

RealNetworks Production Guide
Tip: The zipped HTML version of this guide includes a
JavaScript file that generates the character codes for you. See
“How to Download This Guide to Your Computer” on page 11
for details about getting the zipped HTML manual.

For example, the following RealText source text:

This is a bold tag: ””.

is displayed in a RealText window as:

This is a bold tag: ””.

Using Coded Characters with the mac-roman Character Set

Unlike HTML, RealText allows you to change character sets within a
document. It then takes coded characters from the active character set.
Generally, character codes 128 and lower are the same in all Western-language
character sets. Those higher than 128 may differ, though. In the mac-roman
character set, for example, ¦ is a paragraph symbol. But in iso-8859-1, this
symbol is ¶.

See http://czyborra.com/charsets/mac-roman.gif for a GIF chart of the
mac-roman upper character set. Go by this chart, rather than the W3C reference
provided above if you’ve set and are entering coded
characters of  or higher. The values in the chart are in hexadecimal (base
16). The chart cell in the upper, left-hand corner equals 128 in decimal (base
10), so you can count across from there. To make a paragraph symbol when
using mac-roman, for instance, you use ¦ in the RealText file because
hexadecimal A6 on the chart is decimal 166.

 (nonbreaking space)

to
ÿ

Characters taken from the active character set as specified by the active
 tag. The default character set is iso-8859-1, which is
also known as ISO Latin 1. For a list of these characters, see the W3C
reference at http://www.w3.org/MarkUp/html-spec/html-
spec_13.html. See below, however, if you’re using the mac-roman
character set.

RealText Coded Character Set (continued)

Code Displays as

 (Table Page 2 of 2)
138

CHAPTER 6: RealText Markup
RealText Examples
This following sections provide examples of how to create various types of
RealText clips.

Generic Window

The following sample RealText markup creates a generic RealText window:

<window duration=”30” bgcolor=”yellow”>

Mary had a little lamb,

<time begin=”3”/>little lamb,

<time begin=”6”/>little lamb.

<time begin=”9”/>Mary had a little lamb,

<time begin=”12”/>whose fleece was white as snow.

<time begin=”15”/><clear/>
Everywhere that Mary went,

<time begin=”18”/>Mary went,

<time begin=”21”/>Mary went,

<time begin=”24”/>Everywhere that Mary went,

<time begin=”27”/>That lamb was sure to go.
</window>

When RealPlayer processes this file, it displays only the first line of the text
from zero to three seconds into the stream:

Every three seconds after the first line displays, a new line appears as specified
by <time begin=”n”/>. At 15 seconds, <clear/> clears the displayed text and
resets the text “cursor” to the upper-left corner of the window. When the
stream finishes, all lines of text following the last <clear/> tag appear in the
window:
139

RealNetworks Production Guide
Note the following about this sample clip:

• Because it was not specified in the <window> tag, word wrapping defaults
to true. However, word wrapping is not necessary because
 tags force
line breaks.

• <time/> tags need not appear after a
 tag. They can appear anywhere
in the text.

• The example could have used <time end=”...”/> tags to make individual
lines of text disappear before the <clear/> tag cleared all the lines.

Tickertape Window

The following example shows the RealText markup for a tickertape window.
This is the RealText (.rt) source file:

<window type=”tickertape” duration=”1:00” width=”500” loop=”true”
underline_hyperlinks=”false” link=”white”>

<tu>DJIA</tu>
<tl>7168.35 +36.5 </tl>
<tu>NIKEI 225 Index</tu>
<tl>20603.71 +203.11</tl>

</window>

This source file produces the following window in RealPlayer:

Note the following about this sample clip:

• The text crawls from right to left at 20 pixels per second, the default
crawlrate for a tickertape window.
140

CHAPTER 6: RealText Markup
• The tag at the start bolds all following text.

• DJIA makes DJIA a hyperlink that,
when clicked, opens the URL http://www.dowjones.com/.

• DJIA is not underlined because underline_hyperlinks=”false” is declared in
the <window> tag. It is drawn in white because link=”white” is also in the
<window> tag.

• The attribute loop=”true” in the <window> tag means the text loops around
and comes back in from the right side of the window as soon as the last
character of the text has moved completely out of the window. It is not
necessary to specify this attribute explicitly, because in tickertape windows
loop=”true” is the default.

• The
 tag that comes before the first text item forces the text that
follows to start just past the window’s right edge. Any break or paragraph
tag inside tickertape text causes the text that follows to start at the right
edge. If the
 tag were absent, the data would appear starting at the
window’s left edge.

Scrolling News Window

The following sample RealText markup creates a scrolling news window:

<window type="scrollingnews" width="240" height="180" scrollrate="20"
duration="25" bgcolor="#4488DD">
<p></p><p></p><p></p>
<u>Seattle--February 28, 2001</u>
<p>A powerful earthquake of magnitude 6.8 rocked Seattle at 10:55 A.M.</p>
<p>Initial reports list no fatalities, and traffic is moving on Interstate 5.</p>
<p>Some damage has occurred to buildings in the historic Pioneer Square area.</p>
<p>Seattle mayor Paul Schell is expected to announce a press conference.</p>

</window>

The following figure shows the RealText window at nine seconds into the
presentation:
141

RealNetworks Production Guide
Tip: Text in a scrolling news window normally starts at the top
of the window and scrolls up. As this sample shows, you can
precede the text with <p></p> tags to push the first line of text
to the bottom of the screen.

Teleprompter Window

The following example demonstrates a TelePrompter window. This is the
RealText (.rt) source file:

<window type=”teleprompter” height=”64” duration=”25”
bgcolor=”#D2F8B4” extraspaces=”ignore” wordwrap=”false”>

Out, out, brief candle!

<time begin=”3.5”/>Life's but a walking shadow, a poor player

<time begin=”7”/>That struts
<time begin=”8”/>and frets
<time begin=”9”/>his hour upon the stage

<time begin=”12”/>And then is heard no more:
<time begin=”15”/>it is a tale

<time begin=”16”/>Told by an idiot,
<time begin=”17.5”/>full of sound and fury,

<time begin=”20”/>Signifying
<time begin=”22”/>nothing.
</window>

When the window fills with text and a new line appears, all lines scroll up to
make room for the new line. The following illustrates the window when the
presentation ends:
142

CHAPTER 6: RealText Markup
Note the following about TelePrompter windows:

• The wordwrap attribute can be true or false.

• The scrollrate and crawlrate attributes are ignored.

• You can use a <clear/> tag to clear the window and start the next line at
the window's upper, left-hand corner.

• Use <time begin/> tags at the start of each line and do not let word
wrapping cause too many line breaks between <time/> tags.

• Multiple lines of text with the same begin time cause the preceding text to
move up until all new lines appear at the bottom of the window.
143

RealNetworks Production Guide
144

C H A P T E R
7

 Chapter 7: REALPIX MARKUP
Using RealPix markup, you can create streaming slideshows from
still images in JPEG, GIF, and PNG formats. You can even define
transition effects, such as fades and wipes, that occur between
images. Coupled with an audio soundtrack, RealPix makes a viable
alternative to video for low-bandwidth connections. This chapter
explains the RealPix markup. Appendix F provides a quick reference
for RealPix tags and attributes.

Tip: To see RealPix examples, get the zipped HTML version of
this guide as described in “How to Download This Guide to
Your Computer” on page 11, and view the Sample Files page.

Understanding RealPix
A RealPix slideshow consists of a RealPix markup file, which uses the file
extension .rp, along with any number of images. For each slideshow, you
define an overall duration, and indicate when each image appears during the
presentation timeline. RealPix automatically expands or shrinks each image to
fit in a display area that can be any size. The markup also lets you define
several transition effects:

• Fade an image in from a solid color.

• Fade an image out to a solid color.

• Crossfade between two images.

• Display only part of a source image.

• Introduce a new image with a wipe from left to right, for example.

• Zoom in on a detail, pan around the image, or zoom out.
145

RealNetworks Production Guide
RealPix and SMIL

You can stream a RealPix slideshow by itself, or you can use SMIL to combine
RealPix with other clips, such as a RealAudio soundtrack. Using SMIL 2.0, you
can augment your slideshow with many features. If you stream a slideshow
alongside a video sequence, for example, you can use SMIL transition effects
to fade the videos in and out. In fact, because SMIL 2.0 provides transition
effects, you can use just SMIL 2.0 to assemble a slideshow. As the following
sections explain, though, RealPix and SMIL 2.0 offer different advantages for
delivering slideshows.

RealPix Slideshow Advantages

A streaming slideshow created with RealPix provides the following advantages
over a slideshow defined through SMIL 2.0:

• backwards compatibility

RealPix is compatible with RealPlayer versions earlier than RealOne
Player, such as RealPlayer 7 and RealPlayer 8. SMIL 2.0 works only with
RealOne Player and later, including RealPlayer 10. To coordinate multiple
clips, you can use SMIL 1.0 along with RealPix to reach the widest
RealPlayer audience.

For More Information: For more on the two versions of SMIL,
see “SMIL 1.0 and SMIL 2.0” on page 191.

• better resource use

RealPix maximizes the efficiency of image streaming. Now matter how
many images the slideshow contains, a RealPix presentation needs just
one stream from Helix Server. In contrast, a SMIL 2.0 slideshow may
require a separate Helix Server stream for each image in the slideshow.
RealPix is better suited, therefore, for long slideshows that contain a lot of
images.

• easier timeline and bandwidth management

Under stable network conditions, RealPix guarantees that RealPlayer does
not have to pause the slideshow to buffer more data. It does this by
gauging the bandwidth required to stream all of the images against the
slideshow timeline. It then streams enough preroll data to ensure that the
slideshow does not have to pause once it begins to play. Achieving the
146

CHAPTER 7: RealPix Markup
same results using SMIL 2.0 may require the use of advanced SMIL
features such as prefetching, which Chapter 19 explains.

• image caching in memory

If you reuse an image in a RealPix slideshow, RealPlayer caches the image
in memory until it is no longer needed. A RealPix slideshow can thereby
redisplay images without consuming more bandwidth. A RealPix
slideshow does not have access to the cache of another slideshow playing
concurrently, though, and each cache is deleted when the slideshow ends.

Note: No version of RealPlayer maintains a disk cache of
images shown in a RealPix or SMIL presentation. Nor can
viewers copy or download images. Viewers therefore do not
have access to copyrighted image files shown in a RealPix or a
SMIL 2.0 presentation.

• easier markup for complex effects

RealPix lets you display just part of a source image, zoom in or out on an
image, and pan across an image. Although you can duplicate these effects
using SMIL layout and animations, which are described in Chapter 12 and
Chapter 17, respectively, the RealPix markup lets you create these effects
more easily.

SMIL 2.0 Slideshow Advantages

Creating a slideshow with SMIL 2.0 alone provides these advantages over
using RealPix:

• single markup file

Your SMIL 2.0 file will contain all the required presentation markup. This
can make it easier to coordinate each image with, for example, a separate
audio clip. When you use RealPix, you need a RealPix file to define the
slideshow, and a SMIL file to coordinate the slideshow with other clips,
such as the soundtrack.

• more transition effects

As Chapter 16 explains, SMIL 2.0 provides over 100 styles of transition
effects. You can run each transition effect in a forward or reverse direction,
for example, or use partial or repeating effects. You can also apply SMIL
transition effects to any type of visual clip, including Flash animations
and videos. RealPix, on the other hand, provides about a dozen transition
147

RealNetworks Production Guide
effects for still images only. It doesn’t offer extra features found in SMIL
transition effects, such as border colors and blends. SMIL 2.0 therefore
lets you create a more visually unique slideshow.

• interactive slideshows

Using exclusive groups and SMIL 2.0’s advanced timing features, you can
create an interactive slideshow that advances to a new image only when
the viewer clicks a button, for instance. RealPix slideshows, on the other
hand, always display images automatically according to the predefined
RealPix timeline.

For More Information: For more on SMIL exclusive groups, see
“Creating an Exclusive Group” on page 261. Chapter 14 covers
advanced SMIL timing.

Image Formats and Features

For a RealPix presentation, you can use illustrations, scanned images, or
pictures taken with a digital camera. Images can be in JPEG, PNG, GIF, or
animated GIF format. You’ll likely need image editing software such as Adobe
Photoshop to prepare images. You should know the basics of creating
graphics for the Web, such as JPEG compression and GIF color palettes. When
preparing your presentation, maintain three sets of images:

1. original set

The original set includes the unedited files you start with, such as original
images off a scanner. Keep this set in case you need to change an image in
the working set by, for example, restoring an area you cropped out. Leave
these images uncompressed.

2. working set

The working set comprises the files that you have edited. You may want to
crop the original images, for example, or combine them to form new
images. Keep these files uncompressed so that you can edit them further
if necessary.

Tip: Images do not need to be the same sizes. By default,
RealPix expands or shrinks all images to fit a predefined
display area.
148

CHAPTER 7: RealPix Markup
3. presentation sets

A presentation set consists of the compressed files (GIF, JPEG, or PNG)
used in the presentation. For a given working set, you may have several
presentation sets. For instance, you may have slightly compressed images
for a high-bandwidth presentation, heavily compressed images for a low-
bandwidth version.

For More Information: The section “Images” on page 42 provides
details on the supported image formats. The section
“Controlling an Animated GIF Image” on page 173 explains
how to start a GIF animating within a slideshow.

JPEGTRAN for JPEG Images

JPEGTRAN is a freeware program that optimizes JPEG (.jpg) images for
streaming with RealPix. It modifies them so that if a packet of image data is
lost, RealPlayer can still decode and display remaining packets. If you do not
use JPEGTRAN on your images, RealPlayer cannot decode packets following a
lost packet, and a substantial part of the image may not display. JPEGTRAN is
included in the utilities folder of the zipped HTML version of this manual.
You can also run JPEGTRAN from the RealPix bandwidth calculator, which is
also included in the utilities folder.

Tip: Because running JPEGTRAN may increase or decrease the
image file sizes slightly, run this program on your JPEG images
before you calculate the image streaming times, as described in
“Managing RealPix Bandwidth” on page 152.

For More Information: See “How to Download This Guide to
Your Computer” on page 11 for instructions on getting a local
copy of this guide.

Image Transparency

When you stream a RealPix slideshow to RealPlayer, transparent areas in GIF
and PNG images show underlying images or background colors within the
slideshow. Transparency does not extend to underlying SMIL regions, though.
So if your RealPix presentation appears in front of a video in a SMIL
presentation, the video does not show through transparent image areas.
149

RealNetworks Production Guide
RealPix Timelines

If your presentation consists solely of streaming RealPix images, you have full
control over the RealPix timeline. When you combine RealPix with another
clip such as RealAudio, however, you may want to display the RealPix images
at specific points in the other clip’s timeline. In these cases, finish the other
clip first, then assemble your RealPix presentation so that it coordinates with
the other clip’s final timeline.

When working with an audio track, for example, think about the order of the
images, deciding at which points in the audio timeline each image must
display. When you are ready to assemble your RealPix presentation, play back
the audio and note where you want to add each image. This will establish your
RealPix timeline.

Once you have determined a timeline for your presentation, and have decided
how to show the images, you are ready to create a RealPix presentation. You
may find it easier to create a storyboard to lay out the images and transition
effects. Or you may want to dive right in, using the presentation in progress as
your guide. Either way, carefully consider the bandwidth implications as you
place your images and set the start times and durations.

For More Information: See “Managing RealPix Bandwidth” on
page 152. The section “Step 5: Organize the Presentation
Timeline” on page 51 explains issues involved with multiclip
timelines.

Structure of a RealPix File

A RealPix file is a plain text file that uses the file extension .rp. The RealPix
markup starts with the <imfl> tag, and ends with the </imfl> tag. The following
example shows a simple RealPix file with the most basic attributes. This
sample simply fades in two images in sequence, then fades out to a solid blue:

<imfl>
 <head title="RealPix Example"
 copyright="(c)2002 RealNetworks, Inc."
 background-color="black"
 timeformat="dd:hh:mm:ss.xyz"
 duration="15"
 bitrate="12000"
 width="256"
 height="256"/>
 <!-- Assign handle numbers to images. -->
150

CHAPTER 7: RealPix Markup
 <image handle="img1" name="rtsp://helixserver.example.com/image1.jpg"/>
 <image handle="img2" name="rtsp://helixserver.example.com/image2.jpg"/>
 <!-- Fade in images. -->
 <fadein start="1" duration="3" target="img1"/>
 <fadein start="4" duration="3" target="img2"/>
 <!-- Fade out to a solid blue. -->
 <fadeout start=“8“ duration=“3“ color=“blue“/>
</imfl>

RealPix requires a <head/> tag that defines overall presentation attributes,
such as the duration, the display area size, and the streaming bit rate. After the
<head/> tag, <image/> tags define each image used in the presentation, and
assign each image a unique ID (its “handle”). Effects tags such as <fadein/>
select an image handle, and define the RealPix timeline through their start
attributes. Not all effects specify an image, though. A <fadeout/> tag, for
instance, specifies a fade color rather than an image handle.

Rules for RealPix Markup

The syntax rules for RealPix markup are similar to those for RealText and
SMIL:

• RealPix tags and attribute names must be lowercase.

• A tag that does not have a corresponding end tag closes with a forward
slash (/):

<fadein.../>

In RealPix, only the <imfl> tag, which uses the end tag </imfl>, does not
close with a slash.

• Attribute values must be enclosed in double quotation marks.

• Unless noted otherwise, the order of attributes following the tag name
does not matter.

• You can add a comment like the following to a RealPix file. Note that a
comment tag does not require a closing slash:

<!-- This is a comment -->

RealPix Broadcast Application

You do not have to create RealPix slideshows through static markup files. A
broadcast application can monitor a folder for new images, and broadcast
them through Helix Server as part of a live RealPix presentation. A sample
151

RealNetworks Production Guide
broadcast application is included with the Software Development Kit (SDK)
available for download at this Web page:

http://proforma.real.com/rnforms/resources/server/realsystemsdk/
index.html

Managing RealPix Bandwidth
When you stream your RealPix presentation to viewers over a network, you
need to consider the bandwidth (bit rate) the presentation will consume. You
don’t need to consider bandwidth if copies of the presentation files will reside
on each viewer’s desktop computer, however. This section helps you to
determine your presentation’s bandwidth usage, which can affect how you
construct the RealPix timeline, and helps you decide how large to make your
slideshow images.

Tip: The easiest way to calculate the streaming times for each
image is to use the RealPix bandwidth calculator. This
calculator is included in the utilities folder of the zipped
HTML version of this manual. See “How to Download This
Guide to Your Computer” on page 11 for instructions on
getting a local copy of this guide.

Estimating the Required Bandwidth and Preroll

The table “Maximum Streaming Rates” on page 46 lists the maximum
recommended streaming rates for different network connections. To reach
viewers with 56 Kbps modems, for example, a presentation should not require
more than 34 Kilobits of data per second. When you stream RealPix together
with another clip, such as a soundtrack, you must take into account the
bandwidth required by each clip. If you use a 16 Kbps RealAudio soundtrack,
for instance, you have 18 Kbps left for RealPix images when streaming over 56
Kbps modems (34-16=18).

The bandwidth your RealPix presentation consumes depends on the total size
of the image files and the presentation length. To get a rough estimate of this
bandwidth, add together the sizes of all image files used in the presentation.
152

CHAPTER 7: RealPix Markup
Convert this total to Kilobits using the chart below. Then divide by the
RealPix presentation length in seconds.

For example, if your image files add up to 200 Kilobytes, multiply 200 by 8 to
get 1600 Kilobits. A presentation that lasts two minutes, for instance, uses an
average of 13.3 Kilobits per second:

(200 Kilobytes x 8)/120 seconds = 13.3 Kilobits per second

If your RealPix target is 18 Kbps, your presentation should stream smoothly
with bandwidth to spare. Suppose that the image files add up to 300
Kilobytes, however. In this case, the average streaming speed required is 20
Kbps, which exceeds the 18 Kbps target:

(300 Kilobytes x 8)/120 seconds = 20 Kilobits per second

This slideshow can still stream over a 56 Kbps modem, but it may have a
longer preroll (initial buffering) than desired. RealPix calculates how much
image data must stream to RealPlayer before the slideshow starts in order to
keep the slideshow from rebuffering once it begins to play. In other words, if
your slideshow has too much image data to stream during the length of its
timeline, excess data streams before the slideshow starts to play. The viewer,
though, must wait for this data to arrive before the slideshow can commence.

To illustrate the effects of preroll, suppose that you plan to stream a two-
minute slideshow at 18 Kbps. This presentation can deliver 2,160 Kilobits of
data (18 x 120). If the images add up to 300 Kilobytes (2,400 Kilobits), the
presentation has an extra 240 Kilobits of data to stream. At 18 Kbps, this
means 13 seconds or longer of preroll. In this situation, you can either accept
the longer preroll, which may tempt viewers to quit the slideshow before it
starts, or modify the slideshow to use less bandwidth.

For More Information: “Buffering” on page 45 explains the
basics of preroll. For tips on how to modify or manage preroll,

Converting File Size to Kilobits

Using This Measurement Do This to Get Kilobits

Megabytes Multiply by 8192

Kilobytes Multiply by 8

bytes Divide by 128

bits Divide by 1024
153

RealNetworks Production Guide
see “Lowering RealPix Preroll” on page 155 and “Masking
Preroll With Other Clips” on page 155.

Calculating Individual Image Streaming Times

Dividing the total image size by the presentation length provides only a rough
estimate for preroll. It assumes that all images are about the same size, are
streamed at regular intervals, and appear only once. You may still run into
excess preroll, though, if you use large images, or a lot of images, early in the
slideshow timeline. To prevent this, ensure that each image has enough time
to stream to RealPlayer before it must display. The following table helps you to
estimate how much time is required to stream an image over a 56 Kbps
modem (maximum streaming rate of 34 Kbps), when you combine RealPix
with various RealAudio soundtracks.

The table indicates that if you use an 8 Kbps RealAudio music soundtrack, for
example, you have 26 Kilobits per second of bandwidth available for Realpix
images. At this rate, it takes about 0.31 seconds to stream each Kilobyte of
image data. If an image is 44 Kilobytes, for example, it requires about 13.6
seconds (44 x 0.31) to stream to RealPlayer. The first time this image appears
in the slideshow, it should follow the preceding image by 14 seconds or more.
For convenience, the last table column indicates how much image data can
stream to RealPlayer approximately every five seconds.

Data Streaming Times Over a 56 Kbps Modem

RealAudio Codec RealPix Bandwidth
Streaming Time for
Each Kilobyte of Data

Data Streamed
Every 5 Seconds

No Audio 34 Kilobits/second 0.24 seconds 20.8 Kilobytes

6 Kbps Music -
RealAudio

28 Kilobits/second 0.29 seconds 17.2 Kilobytes

8 Kbps Music -
RealAudio

26 Kilobits/second 0.31 seconds 16.1 Kilobytes

11 Kbps Music -
RealAudio

23 Kilobits/second 0.34 seconds 14.7 Kilobytes

16 Kbps Music -
RealAudio

18 Kilobits/second 0.5 seconds 10 Kilobytes

20 Kbps Music -
RealAudio

14 Kilobits/second 0.57 seconds 8.8 Kilobytes
154

CHAPTER 7: RealPix Markup
Note: Once RealPlayer has received a RealPix image, it caches
the image in memory, so you can reuse the image within the
same slideshow without having to stream the image data
again. RealPlayer deletes this cache when the slideshow ends.

Lowering RealPix Preroll

If your RealPix presentation requires excessive preroll, you can alter the
images, modify the timeline, or both. Whenever you alter images, be sure to
test that your slideshow retains acceptable image quality. The following are
some tips for lowering the slideshow’s bandwidth consumption:

• Crop out unnecessary portions of your images to reduce the image file
sizes. The smaller the file, the faster it streams.

• Because an image automatically expands to fill the RealPix display area,
you can reduce the image dimensions to lower its bandwidth requirement.
You then let RealPlayer expand the image during playback.

• Reduce the resolution and number of colors in images while maintaining
satisfactory image quality. For JPEG files, experiment with higher
compression rates.

• Use smaller images at the beginning of the presentation. They will stream
to RealPlayer faster, and Helix Server can use the extra bandwidth to start
streaming larger files needed later.

• Introduce images gradually over the timeline. Don’t use rapid effects with
a lot of images at the beginning of the presentation. Once you have
displayed all images, however, you can use rapid effects because RealPlayer
holds the image data in memory.

• Increase the length of the presentation by, for example, adding an extra
second to the start time of each effect.

Masking Preroll With Other Clips

You can stream a low-bandwidth clip ahead of your slideshow to mask the
RealPix preroll. For example, you can start the presentation with a RealText
clip that displays opening credits. Or you can use a low-bandwidth RealAudio
voice clip as a narration. As these introductory clips play, Helix Server takes
advantage of the extra bandwidth to stream the RealPix preroll. To set this up,
you assemble the overall presentation using SMIL, placing all clips in a
parallel group, and setting a delay for the RealPix clip with a begin attribute:
155

RealNetworks Production Guide
<par>
 <textstream src=”credits.rt” region=”credits_region” dur=”15s” fill=”remove”/>
 <ref src=”slideshow.rp” region=”slides_region” begin=”15s”/>
</par>

For More Information: See Chapter 6 for more on RealText. The
section “Playing Clips in Parallel” on page 251 explains <par>
groups. See “Setting Begin and End Times” on page 316 for
more on the begin attribute.

Setting Slideshow Characteristics
All information in the RealPix file falls between an opening <imfl> tag and a
closing </imfl> tag. This is the only tag in the RealPix markup that uses an end
tag. The <head/> tag follows the <imfl> tag in the RealPix file. Unlike the
HTML <head> tag, the RealPix <head/> tag does not have a corresponding
</head> tag. Instead, it closes with a slash:

<imfl>
 <head...attributes.../>
 ...RealPix images and transition effects...
</imfl>

The <head/> tag sets standard presentation information such as the title,
author, and copyright. It also defines necessary parameters such as the
presentation’s duration and streaming bit rate. The following table
summarizes all <head/> tag attributes. An asterisk (*) indicates a required
attribute.

RealPix <head/> Tag Attributes

Attribute Value Function Reference

aspect false|true Handles image aspect ratios. page 161

author text Gives the name of the author. page 159

background-color name|#RRGGBB Sets an initial background color. page 160

bitrate* bits_per_second Indicates required bandwidth. page 159

copyright text Gives the copyright notice. page 159

duration* time_value Sets the presentation duration. page 158

height* pixels Specifies the presentation height. page 157

maxfps integer Sets the maximum frames per
second for transition effects.

page 162

 (Table Page 1 of 2)
156

CHAPTER 7: RealPix Markup
Defining the Presentation Size

The required width and height attributes set the size of the image display area
in pixels. By default, all images are centered within this area, and enlarged or
reduced so that no cropping occurs. The aspect attribute determines whether
distortion may occur, though. The following example creates a RealPix
playback area 256 by 256 pixels:

<head width=“256” height=“256“.../>

When you stream just RealPix, RealPlayer’s media playback pane expands to
the specified size when the slideshow begins. When you play RealPix with
another clip, you lay out playback regions with SMIL. You typically create for
the slideshow a SMIL playback region that uses the same width and height set
in the RealPix markup. If the SMIL region is a different size, the region’s fit
attribute determines how to handle the size difference, such as by scaling or
cropping the entire display area.

For More Information: Chapter 12 describes SMIL layouts in
general. See “Fitting Clips to Regions” on page 303 for more on
the fit attribute.

Specifying the Time Format

The timeformat attribute sets the format the for start and duration attributes
used with RealPix effects. RealPix can specify time values in milliseconds or
“normal play time” format, but not with SMIL shorthand timing values such
as “2s”. The default time format is milliseconds, which means that a time value
such as 5400 is read as 5400 milliseconds (5.4 seconds). Millisecond time
values cannot include colons or a decimal point.

You can also set timeformat to the normal play time format:

preroll seconds Allots time for initial buffering. page 160

timeformat milliseconds|
dd:hh:mm:ss.xyz

Indicates the format of time
attributes.

page 157

title text Gives the presentation title. page 159

url URL Sets a hyperlink URL for images. page 161

width* pixels Specifies the presentation width. page 157

RealPix <head/> Tag Attributes (continued)

Attribute Value Function Reference

 (Table Page 2 of 2)
157

RealNetworks Production Guide
<head timeformat=“dd:hh:mm:ss.xyz”.../>

Here, dd is days, hh is hours, mm is minutes, ss is seconds, x is tenths of
seconds, y is hundredths of seconds, and z is milliseconds. Only the ss field is
required. With this format, for instance, duration=”3” sets a three-second
duration.

When the time value does not include a decimal point, the last field is read as
the seconds. For example, 1:30 means 1 minute and 30 seconds, whereas
1:30:00 means 1 hour and 30 minutes. Note that with the normal play time
format, all of the following values are equivalent. Each starts the effect 90
minutes after the RealPix presentation begins:

start=“1:30:00.0“
start=“90:00“
start=“5400“

Setting the Presentation Duration

The required duration attribute sets the length of the entire RealPix
presentation, using the time format specified in the timeformat attribute. For
example, the following value sets a duration of 50 seconds:

<head timeformat=“dd:hh:mm:ss.xyz” duration=“50“.../>

All RealPix effects stop immediately when the duration elapses. When the
duration time exceeds the time required to complete the effects, the last effect
stays frozen onscreen until the duration elapses.

Tips for Setting a RealPix Duration

• As you develop your RealPix presentation, set a high duration. Once you
have finished the timeline, adjust the presentation duration. If you
introduce the last image at 90 seconds into the timeline, for example, you
may want to set a presentation duration of 95 seconds or higher.

• If your slideshow stops playing before all images have displayed, you
probably need to increase the presentation duration, or change the
timeformat attribute in the <head/> tag.

• RealPlayer reflects the duration you set. If you set a duration of five
minutes, for instance, the RealPlayer status bar lists the presentation
length as 5:00.0 and the RealPlayer position slider takes five minutes to
travel from left to right.
158

CHAPTER 7: RealPix Markup
• A presentation duration set much higher than the time it takes all images
and effects to display may unnecessarily delay clips that play after the
RealPix slideshow in a SMIL sequence. A high duration can also make it
difficult for viewers to use the RealPlayer position slider to search for
specific parts of the slideshow.

• Within a SMIL presentation, the SMIL dur attribute can shorten the time
that the slideshow plays, effectively overriding the RealPix duration
attribute. See “Setting Durations” on page 319 for more about dur.

Controlling the Streaming Bit Rate

The required bitrate attribute specifies the maximum bandwidth the RealPix
presentation consumes. Specify the value in bits per second (bps). For
example, the following value sets a maximum bandwidth of 12000 bps
(approximately 12 Kbps):

<head bitrate=“12000“.../>

Tip: To convert precisely from Kilobits per second to bits per
second, multiply by 1024.

For More Information: “Managing RealPix Bandwidth” on page
152 explains how to calculate bandwidth requirements for a
RealPix presentation.

Defining the Title, Author, and Copyright

The optional title, author, and copyright attributes define information for the
RealPix presentation:

<head title=“My RealPix Slideshow“ author=“Pat Morales“
 copyright=“(c) 2002 RealNetworks Media Productions“.../>

When present, these attributes define the values that display for the
RealPlayer clip information (File>Clip Properties>View Clip Info). If the RealPix
presentation is played through a SMIL file, however, title, author, and
copyright information set through SMIL may override the information you
set here.

For More Information: See “Where Title, Author, and Copyright
Information Displays” on page 240.
159

RealNetworks Production Guide
Creating a Background Color

The optional background-color attribute sets an initial background color. The
default color is black. RealPix backgrounds can use color names, which are
listed in “Using Color Names” on page 555, or hexadecimal color values,
which are described in “Defining Hexadecimal Color Values” on page 556.
RealPix does not support RGB colors in the format rgb(n,n,n), however. The
following example sets the initial background color to a shade of red:

<head background-color=”#E00000”.../>

Note: In RealPix, background-color is hyphenated. In SMIL 2.0,
the backgroundColor attribute for regions uses camel case.

Tip: During the course of a slideshow, you can change the
background color with the <fill/> tag, which is described in the
section “Painting a Color Fill” on page 171.

Setting a Preroll Value

The optional preroll attribute specifies the time to buffer data in RealPlayer
before the start of the RealPix presentation. The following example sets the
RealPix preroll to 40 seconds:

<head preroll=“40“.../>

Helix Server always calculates the preroll required for the presentation based
on the image file sizes and presentation timing parameters. If this calculated
value is larger than the preroll you set, it overrides your specified preroll. Your
preroll value is used, however, if it is higher than the calculated preroll value.
You therefore need to set the preroll value only if you want an artificially high
preroll.

A high preroll can be useful when you stream RealPix with another clip.
Suppose that a RealVideo clip starts midway through a RealPix presentation.
You can use a high preroll to download a significant portion of the RealPix
data before the presentation starts. The RealVideo clip then has more
bandwidth available when it begins. It can therefore stream its required preroll
without competing with RealPix for bandwidth.

Tip: Always balance preroll values with viewer expectations.
Viewers may not stay tuned to a presentation that takes a long
time to start playing back. To determine the preroll for a clip
streamed in parallel with your slideshow, such as an audio
160

CHAPTER 7: RealPix Markup
soundtrack, open the clip in RealPlayer, and use File>Clip
Properties>Clip Source to view the buffering information.

For More Information: For more on preroll, see “Estimating the
Required Bandwidth and Preroll” on page 152.

Adding a Presentation URL

The optional url attribute sets a hyperlink URL for the presentation. When the
viewer clicks a presentation image, the RealPix presentation continues to play
as the URL opens in the RealPlayer media browser pane, or, with earlier
versions of RealPlayer, in the viewer’s default Web browser. Individual effects
can also include a url attribute that overrides the presentation-wide value for
the duration of the effect. For the attribute value, use a fully qualified URL
such as the following:

<head url=“http://www.real.com“.../>

For More Information: You can also use the url attribute to open
a streaming presentation in a new RealPlayer media window.
See “Opening a Media Playback Window with a Clip Link” on
page 384.

Handling Image Aspect Ratios

With its default value of true, the aspect attribute keeps an image at its normal
width-to-height ratio when the width and height attributes in the <head/> tag
create a different width-to-height ratio for the playback area. In this case,
images are displayed as large as possible in the playback area without cropping
and distortion. The background color or the preceding image appears in the
areas not covered by the new image. You can turn this off by setting the
attribute to false:

<head aspect=“false“.../>

In this case, RealPlayer fills the defined playback area with each image, which
distorts any images that have width-to-height ratios different from the display
area. Images are never cropped, however. The following figure shows how a
source image fills a display area differently when aspect is set to false or true .
161

RealNetworks Production Guide
Effects of Overriding and Maintaining Image Aspect Ratios

Note: The aspect attribute in the <head/> tag affects the entire
presentation, but individual effects can override this setting
with their own aspect attributes, as described in “Changing an
Image’s Aspect Ratio” on page 168.

Setting the Maximum Frames Per Second

The optional maxfps attribute specifies an integer from 1 to 30 that sets the
maximum frames per second (fps) for RealPix transition effects:

<head maxfps=“5“.../>

This attribute is not required because RealPlayer determines the optimal
frame rate based on the playback computer’s available CPU power. When CPU
power is plentiful, RealPlayer renders transition effects at the maximum of 30
fps. It scales down the transition rates accordingly when less CPU power is
available.

You can set the maxfps attribute low to create special effects, though. For
example, maxfps=”5” keeps transitions constrained to no more than 5 fps. This
causes visible jerks in transitions, which may be a desirable effect. Additionally,
you can use maxfps in RealPix transition tags to balance CPU usage between
multiple RealPix slideshows played simultaneously in a SMIL presentation.

Destination Images
aspect="true"

Source Image

Destination Images
aspect="false"
162

CHAPTER 7: RealPix Markup
For More Information: Individual effects can override the
presentation value with their own maxfps values. See “Capping
an Effect’s Frame Rate” on page 168.

Defining Images
For each image you use in the RealPix presentation, you add an <image/> tag
after the <head/> tag. The <image/> tag provides the image file location, and
assigns the image a unique handle number. The following table summarizes
the <image/> tag attributes. An asterisk (*) denotes a required attribute.

Creating an Image Handle

The required handle attribute assigns a positive integer to the image. Each
handle number within the file must be unique. The RealPix effects tags refer
to the handle number, rather than the file name, in their target attributes.
Here is an example of an image handle:

<image handle=“18“.../>

that an effects tag refers to when fading in the image:

<fadein target=”18”.../>

Although it is not required, you may find that using sequential handle
numbers, as well as listing <image/> tags according to the handle numbers,
helps you to keep the organization of your presentation clear:

<image handle=“1“.../>
<image handle=“2“.../>
<image handle=“3“.../>

Note: It is not necessary to follow the handle order when
defining the timeline. The image with handle=“3” might appear
first, followed by the image with handle=”1” .

RealPix <image/> Tag Attributes

Attribute Value Function Reference

handle* integer Sets an ID used by transition effects. page 163

name* filename Provides the file name and path. page 164

size bytes Indicates the file size for Web server delivery. page 164

mime mime_type Specifies a mime type for Web server delivery. page 165
163

RealNetworks Production Guide
Specifying an Image File Name and Path

The required name attribute specifies the image file name, along with its path
relative to the location of the RealPix file. The file name and path are case
sensitive. When streaming files from Helix Server, folder (directory) names
must not contain spaces. The following example designates an image file that
resides in the same folder as the RealPix file:

<image name=“tulip.jpg“.../>

Image files can also reside in folder levels below (but not above or adjacent to)
the RealPix file. This next example indicates that the image file resides one
level below the RealPix file in the images folder:

<image name=“images/tulip.jpg“.../>

Streaming the Presentation

The local, relative paths for the name attribute allow you to develop and test
your RealPix slideshow locally. You do not need to change the name values
when you are ready to stream your slideshow. In a Ram or SMIL file, you
simply use an HTTP or RTSP URL to request the RealPix file. The images
automatically use the same protocol used to request the RealPix file.

Keeping All Files on the Same Server

Unlike a SMIL presentation, in which various clips can reside on different
servers, RealPix requires that the RealPix file and all image files stay on the
same server. This is because Helix Server reads the RealPix file and determines
the image file sizes to calculate how much preroll it must stream to RealPlayer
before the slideshow can begin.

Using Absolute, Local URLs

If you are developing a presentation that plays back locally for all viewers
(rather than streams from a server), you can use absolute, local URLs in the
following format, which includes three forward slashes in file:///, and uses
forward slashes in path names as well:

file:///C:/My Documents/Images/picture1.jpg

Indicating the Image Size for Web Servers

The optional size attribute, which works only with RealPlayer 7 or later,
specifies the size of the image in bytes. Include it in the <image/> tag when
164

CHAPTER 7: RealPix Markup
delivering a RealPix presentation with a Web server. RealPlayer can then
determine when to request each image file from the Web server to ensure
smooth playback. Here is an example of an image file approximately 24 KB in
size:

<image size=“24000“.../>

The size attribute is not required when streaming a RealPix presentation from
Helix Server, which determines image sizes directly through the files. It then
calculates when to stream each image to ensure smooth playback for the
viewer’s given bandwidth.

Note: Be careful to list the file sizes correctly. If the file is
significantly larger than the value given by its size attribute,
the presentation may stall.

Setting the Mime Type

The optional mime attribute works with RealPlayer 7 and later. It specifies the
image mime type, and may be necessary when delivering a RealPix
presentation with a Web server. Here is an example:

<image mime=“image/jpeg“.../>

The following are the valid mime types you can use:

Helix Server typically determines the MIME type from the image file’s
extension, such as .gif or .jpg, making the mime attribute unnecessary. You
need to include the mime attribute only on these two conditions:

• <image/> tags use the size attribute

—and—

• the <image/> tag’s name attribute supplies a file name that does not
include a file extension.

Using Common Transition Effects Attributes
Most RealPix transition effects tags, which are described in “Creating RealPix
Transition Effects” on page 168, use a common set of attributes that select an

GIF images: mime=“image/gif”

JPEG images: mime=“image/jpeg”

PNG images: mime=“image/png”
165

RealNetworks Production Guide
image, indicate when the effect occurs within the RealPix timeline, set the
effect duration, and so on. The following table summarizes these attributes.
The sections on each RealPix tag indicate which of these attributes an effect
requires, or can optionally include.

Setting an Effect Start Time

The start attribute is required for all RealPix effects. It specifies the time from
the beginning of the RealPix timeline that the effect occurs. Here is an
example that starts a crossfade at 12.3 seconds into the timeline:

<crossfade start=“12.3“.../>

The individual start times create the timeline for the individual effects, while
the <head/> tag’s duration attribute sets the overall presentation time. If your
last start time is 180, for example, make sure that the duration attribute set in
the <head/> tag is greater than 180. For more on this, see “Setting the
Presentation Duration” on page 158.

Note: To specify start and duration values in seconds, you must
set timeformat=“dd:hh:mm:ss.xyz” in the <head/> tag. Otherwise,
a value such as start=”12” means 12 milliseconds. For more on
the time format, see “Specifying the Time Format” on page
157.

Specifying an Effect Duration

The duration attribute in an effect tag is unrelated to the duration attribute in
the <head/> tag. In an effect tag, the duration attribute specifies the total time
for the effect to complete. The higher the value, the slower the effect. For
example, the following value causes the fade to complete in 2.5 seconds:

RealPix Common Effects Tag Attributes

Attribute Value Function Reference

aspect false|true Maintains or ignores the image aspect ratio. page 168

duration time_value Specifies the effect’s total duration. page 166

maxfps integer Controls the maximum frame rate. page 168

start time_value Gives the effect start time. page 166

target handle Indicates the image used for the effect. page 167

url URL Sets a link URL while the effect is active. page 167
166

CHAPTER 7: RealPix Markup
<fadein start=”12” duration=“2.5“.../>

The duration attribute affects only a transition effect, and does not control
how long an image or color fill displays. The subsequent effect’s start attribute
controls how long the image or color fill displays. Consider this example:

<fadein target=”5” start=”12” duration=“3“.../>
<fadein target=”6” start=”18” duration=“4“.../>

Here, image 5 starts to fade in at 12 seconds into the RealPix timeline. The
fadein finishes at 15 seconds (12+3). The image then displays stationary for
three seconds when, at 18 seconds into the timeline, image 6 begins to fade in.
The second fadein completes at 22 seconds into the timeline (18+4). At that
point, image 6 has completely replaced image 5.

Selecting the Image Target

The target attribute is required for effects that introduce images. It specifies
the <image/> tag handle of the image, which is described in “Creating an
Image Handle” on page 163. For example, if tulips.jpg is defined with the
following <image/> tag:

<image handle=“2“ name=”tulips.jpg”/>

you fade tulips.jpg into the presentation by targeting the handle number:

<fadein target=“2“.../>

Creating an Effect URL

The url attribute sets a hyperlink URL that is valid for as long as the image
displays, overriding the URL set through the <head/> tag, which is described in
“Adding a Presentation URL” on page 161. When the viewer clicks the image,
the RealPix presentation continues to play as the URL opens in the RealPlayer
media browser pane, or, with earlier versions of RealPlayer, in the viewer’s
default Web browser. Use a fully qualified URL like the following:

<fadein url=“http://www.real.com“.../>

For More Information: Note that you can use the url attribute to
open a streaming presentation in a new RealPlayer window. See
“Opening a Media Playback Window with a Clip Link” on page
384 for more information.
167

RealNetworks Production Guide
Opening URLs Automatically

The URLs specified by url attributes open only when clicked. However, when
you stream a RealPix presentation to RealOne Player or later, you can use
SMIL 2.0 to open HTML URLs automatically. You might open a different
HTML page after each image displays, for example. To do this, create a SMIL
2.0 file that plays the RealPix presentation, and includes timed <area/> tags
that open automatically through the actuate=”onLoad” attribute. See “Linking
to HTML Pages” on page 373 for more information.

Tip: You’ll need to take into account the bandwidth required to
open HTML page URLs as you plan your RealPix slideshow.
Otherwise, the slideshow may pause as each page opens.

Changing an Image’s Aspect Ratio

You can set the optional aspect attribute to true or false in an effect tag to
override the aspect attribute set in the <head/> tag, which is described in
“Handling Image Aspect Ratios” on page 161. The image introduced with the
effect then appears undistorted (aspect=”true”) or distorted (aspect=”false”) if it
has a different width-to-height ratio than the display area. Here is an example:

<crossfade aspect=“false“.../>

Capping an Effect’s Frame Rate

The optional maxfps attribute specifies an integer from 1 to 30 that sets the
maximum frames per second for the effect. It overrides any default maxfps
value set in the <head/> tag, which is described in “Setting the Maximum
Frames Per Second” on page 162. Here’s an example:

<fadein maxfps=“5“.../>

Creating RealPix Transition Effects
The following sections describe the RealPix tags that you use to introduce
images, display transition effects such as fades, and create special effects such
as zooms. The section “Using Common Transition Effects Attributes” on page
165 describes the standard attributes used in many of these effects tags.
168

CHAPTER 7: RealPix Markup
Fading In on an Image

The <fadein/> tag creates a gradual transition from the currently displayed
color or image to another image. A <fadein/> tag looks like this:

<fadein start=“4“ duration=“3“ target=“2“/>

The following figure illustrates a fade from a solid color to an image.

Fade from a Solid Color to an Image

The following table summarizes the attributes that you can use in a <fadein/>
tag. An asterisk (*) denotes a required attribute.

Tip: You can fade in multiple images simultaneously.
RealNetworks recommends that these images do not overlap,
however, because the appearance may be unpredictable.

RealPix <fadein/> Tag Attributes

Attribute Value Function Reference

aspect false|true Maintains or ignores the image aspect ratio. page 168

dsth|dstw|
dstx|dsty

pixels Sets the size and placement of the image that
fades in.

page 177

duration* time_value Specifies the effect’s total duration. page 166

maxfps integer Controls the maximum frame rate. page 168

srch|srcw|
srcx|srcy

pixels Selects part of the source image for the effect. page 177

start* time_value Gives the effect start time. page 166

target* handle Indicates the image used for the effect. page 167

url URL Sets a link URL while the effect is active. page 167
169

RealNetworks Production Guide
Fading an Image Out to a Color

The <fadeout/> tag defines a transition from an image to a color. You can use a
predefined color name or a hexadecimal value, as described in Appendix C.
RealPix does not support RGB colors in the format rgb(n,n,n), however. The
following example fades the RealPix display area to yellow:

<fadeout start=“10“ duration=“3“ color=“yellow“/>

The following figure illustrates a fade to a solid color.

Fade from an Image to a Solid Color

The following table summarizes the attributes that you can use in a <fadeout/>
tag. An asterisk (*) denotes a required attribute.

Crossfading One Image Into Another

The <crossfade/> tag creates a transition from one image to another, as
illustrated in the following figure. An image should be displaying in the
RealPix area already when you use a crossfade to specify a new image:

<crossfade target=”4” start=“15“ duration=“4“/>

RealPix <fadeout/> Tag Attributes

Attribute Value Function Reference

color name|
#RRGGBB

Sets the fade color. page 555

dsth|dstw|
dstx|dsty

pixels Sets the size and placement of the rectangle
that fades out.

page 177

duration* time_value Specifies the effect’s total duration. page 166

maxfps integer Controls the maximum frame rate. page 168

start* time_value Gives the effect start time. page 166
170

CHAPTER 7: RealPix Markup
Crossfade from One Image to Another

The following table summarizes the attributes that you can use in a
<crossfade/> tag. An asterisk (*) denotes a required attribute.

Painting a Color Fill

The <fill/> tag paints a colored rectangle instantly. Use it anytime you want to
fill all or part of the display area. You can fade in an image, for instance, then
fill the display area with a color that paints over the image. You can use a
predefined color name or a hexadecimal value, as described in Appendix C.
RealPix does not support RGB colors in the format rgb(n,n,n), however. A
<fill/> tag looks like this:

<fill start=“9“ color=“#23A134“/>

RealPix <crossfade/> Tag Attributes

Attribute Value Function Reference

aspect false|true Maintains or ignores the image aspect ratio. page 168

dsth|dstw|
dstx|dsty

pixels Sets the size and placement of the image that
fades in.

page 177

duration* time_value Specifies the effect’s total duration. page 166

maxfps integer Controls the maximum frame rate. page 168

srch|srcw|
srcx|srcy

pixels Selects part of the source image for the effect. page 177

start* time_value Gives the effect start time. page 166

target* handle Indicates the image used for the effect. page 167

url URL Sets a link URL while the effect is active. page 167
171

RealNetworks Production Guide
The following table summarizes the attributes that you can use in a <fill/> tag.
An asterisk (*) denotes a required attribute.

Creating a Wipe Effect

The <wipe/> tag creates a transition from one image to another, either by
having the second image slide over and cover the first image, or by having it
push the first image out of the display area. A typical <wipe/> tag looks like
this:

<wipe type=“push“ direction=“left“ start=“10“ duration=“3“ target=“2“/>

The following figure illustrates this effect.

“Push” Wipe Transition from One Image to Another

The following table summarizes the attributes that you can use in a <wipe/>
tag. An asterisk (*) denotes a required attribute.

RealPix <fill/> Tag Attributes

Attribute Value Function Reference

color name|
#RRGGBB

Sets the fill color. page 555

dsth|dstw|
dstx|dsty

pixels Sets the size and placement of the rectangle
that is filled.

page 177

start* time_value Gives the effect start time. page 166

RealPix <wipe/> Tag Attributes

Attribute Value Function Reference

aspect false|true Maintains or ignores the image aspect ratio. page 168

direction* left|right|
up|down

Sets the wipe effect direction. page 173

 (Table Page 1 of 2)
172

CHAPTER 7: RealPix Markup
Setting the Wipe Type

The required type attribute defines the type of transition that occurs:

Here is an example:

<wipe type=“push“.../>

Choosing the Wipe Direction

The required direction attribute sets the direction the new image moves:

For example:

<wipe direction=“up“.../>

Controlling an Animated GIF Image

When you display an animated GIF image in a RealPix slideshow, the GIF does
not automatically begin to animate. Instead, you use the <animate/> tag to

dsth|dstw|
dstx|dsty

pixels Sets the size and placement of the image that
is wiped in.

page 177

duration* time_value Specifies the effect’s total duration. page 166

maxfps integer Controls the maximum frame rate. page 168

srch|srcw|
srcx|srcy

pixels Selects part of the source image for the effect. page 177

start* time_value Gives the effect start time. page 166

target* handle Indicates the image used for the effect. page 167

type* normal|push Specifies the type of wipe effect. page 173

url URL Sets a link URL while the effect is active. page 167

RealPix <wipe/> Tag Attributes (continued)

Attribute Value Function Reference

 (Table Page 2 of 2)

normal New image moves over current image, which remains stationary.

push New image pushes current image out (both images move).

left New image starts at right edge, moves toward left edge.

right New image starts at left edge, moves toward right edge.

up New image starts at bottom edge, moves toward top edge.

down New image starts at top edge, moves toward bottom edge.
173

RealNetworks Production Guide
start the GIF cycling through its frames. This lets you control when the
animation starts, and how long it lasts. An <animate/> tag looks like this:

<animate start=“10“ duration=“30“ target=“2“/>

The following table summarizes the attributes that you can use in a
<animate/> tag. An asterisk (*) denotes a required attribute.

If you introduce an animated GIF into the presentation with <animate/>, the
GIF appears instantly at its start time, with no transition effect. However, you
can also introduce the GIF with another tag, such as <fadein/>, then use
<animate/> to start the animation. Here’s an example:

<fadein start=”5” duration=”1” target=”2”/>
<animate start=“10“ duration=“30“ target=“2“/>

In this example, the animated GIF fades in at five seconds into the timeline.
Its first frame remains stationary until 10 seconds into the timeline. The GIF
then cycles through its programmed animation sequence for 30 seconds.

Note: The RealPix <animate/> tag is not related to the
<animate/> tag used in SMIL animations, which is described in
“Animation Tags” on page 420.

Zooming In, Zooming Out, and Panning

The <viewchange/> tag defines a pan or a zoom. It requires the use of the
source and destination attributes described in “Controlling Image Size and
Placement” on page 177. A typical <viewchange/> tag looks like this:

RealPix <animate/> Tag Attributes

Attribute Value Function Reference

aspect false|true Maintains or ignores the image aspect ratio. page 168

dsth|dstw|
dstx|dsty

pixels Sets the size and placement of a GIF
introduced with <animate/>.

page 177

duration* time_value Specifies the effect’s total duration. page 166

maxfps integer Sets the animation’s maximum frame rate. page 168

srch|srcw|
srcx|srcy

pixels Selects part of the source GIF to display. page 177

start* time_value Gives the effect start time. page 166

target* handle Indicates the image used for the effect. page 167

url URL Sets a link URL while the effect is active. page 167
174

CHAPTER 7: RealPix Markup
<viewchange start=“24“ duration=“3“ srcx=“80“ srcy=“80“ srcw=“48“ srch=“48“/>

Note that <viewchange/> does not specify an image. The view change always
affects the image currently in the display area. The following figure illustrates
a zoom created with a <viewchange/> tag.

Zoom Effect Created with a View Change

The following table summarizes the attributes that you can use in a
<viewchange/> tag. An asterisk (*) denotes a required attribute.

Zooming In on an Image

To zoom in on an image, display the image and then use <viewchange/> to
define a source rectangle to zoom in on. The following example is taken from
a RealPix presentation that displays in an area 256-by-256 pixels. The source
image is also 256-by-256 pixels. The presentation fades in on the image and
then zooms in, taking three seconds to complete the zoom:

<fadein start=“1“ duration=“2“ target=“1“/>
<viewchange start=“4“ duration=“3” srcx=“64“ srcy=“64“ srcw=“128“ srch=“128“/>

RealPix <viewchange/> Tag Attributes

Attribute Value Function Reference

dsth|dstw|
dstx|dsty

pixels Sets the size and placement of the destination
rectangle.

page 177

duration* time_value Specifies the effect’s total duration. page 166

maxfps integer Controls the maximum frame rate. page 168

srch|srcw|
srcx|srcy

pixels Selects the size and placement of the source
rectangle.

page 177

start* time_value Gives the effect start time. page 166
175

RealNetworks Production Guide
The zoom selects a source rectangle that is 128-by-128 pixels, and that appears
in the center of the source image. This source rectangle displays in the full
256-by-256-pixel display area. The following figure illustrates this zoom.

Zooming in on Part of an Image

Because this zoom effect does not specify a destination rectangle, the zoom
image fills the entire display area. But you can also use the destination
coordinates (dstx, dsty, dstw, dsth) to specify a destination rectangle within the
display area.

Panning Across an Image

To pan across an image, display a portion of the source image, then use
<viewchange/> to move to a different part of the source image. The following
example uses a RealPix presentation that displays in an area 256-by-256 pixels.
The source image is also 256-by-256 pixels:

<fadein start=“1“ duration=“3“ target=“2“/>
<viewchange start=“4“ duration=“3” srcx=“0“ srcy=“0“ srcw=“128“ srch=“128“/>
<viewchange start=“7“ duration=“3“ srcx=“128“ srcy=“0“ srcw=“128“ srch=“128“/>

The presentation fades in an image, zooms in on the upper-left quadrant, then
pans to the upper-right quadrant. Each effect takes three seconds to complete.
The following figure illustrates this movement.

64
64

128

128

25
6

256

Destination

64
64

Source

128

128

25
6

256
176

CHAPTER 7: RealPix Markup
Zooming in on, then Panning across an Image

Because this pan effect does not specify a destination rectangle, the source
rectangle fills the entire display area. But you can also use the destination
coordinates (dstx, dsty, dstw, dsth) to specify a destination rectangle within the
display area.

Controlling Image Size and Placement
When RealPlayer plays a RealPix slideshow, it expands its media playback pane
to the size defined by the <head/> tag’s width and height attributes. To create a
simple presentation such as a basic slideshow, you can simply fade the images
in and out of this display area. Images the same size as the display area appear
full-size. Larger images shrink to fit the area, smaller images expand.

128

128

25
6

25
6

256

256

Destination

Source

128

128

128

128

25
6

25
6

256

256
177

RealNetworks Production Guide
You may want to display just a portion of a source image, however. Or you may
want to display two images side-by-side. RealPix lets you specify a portion of a
source image that appears in the display area. It also lets you determine the
size and placement of images in the display area. To understand how this
works, keep in mind the following definitions:

Source Image
An image used in your slideshow. A presentation may display one source
image at a time, or it may display several source images arranged in a
checkerboard pattern, for instance.

Source Rectangle
The portion of a source image you want to display. You might want to
display only the top half of a source image in the display area, for example.
Think of the source rectangle as a cropped version of a source image that
you can display in a RealPix slideshow without altering the source image.

Display Area
The part of the RealPlayer media playback pane in which your
presentation plays back. You set the display area size with the RealPix
<head/> tag’s width and height attributes, as described in “Defining the
Presentation Size” on page 157.

Destination Rectangle
A portion of the display area where the source rectangle appears, such as
the area’s upper-left quadrant. Keep in mind that a destination rectangle
does not have to have the same size or proportions as a source rectangle.

Defining Source and Destination Attributes

To use just a portion of a source image or the display area for an effect, you
define the source rectangle, destination rectangle, or both in an effect tag. To
do this, you work with the attributes described in the following table.

Attributes for Defining Source and Destination Rectangles

Attribute Specifies

dsth Height of the destination rectangle in pixels.

dstw Width of the destination rectangle in pixels.

dstx Horizontal coordinate in pixels for the destination rectangle’s left corner.

dsty Vertical coordinate in pixels for the destination rectangle’s left corner.

srch Height of the source rectangle in pixels.
 (Table Page 1 of 2)
178

CHAPTER 7: RealPix Markup
The offset attributes (dstx, dsty, srcx, and srcy) default to zero. The destination
rectangle size attributes (dstw and dsth) default to the display area width and
height. The source rectangle size attributes (srcw and srch) default to the
source image width and height. This means that if you leave the source
attributes out of a tag, the entire source image is used. If you leave the
destination attributes out of a tag, the selected image portion fills the entire
display area.

Note: The aspect attribute, described in “Handling Image
Aspect Ratios” on page 161, determines how an image appears
when the source and destination rectangles have different
width-to-height ratios.

Exhibiting Part of an Image in the Entire Display Area

In the example below, both the source image and display area are 256 pixels
high by 256 pixels wide. The source rectangle tags display the upper-left
quadrant of the source image in the display area, effectively magnifying the
source rectangle by a factor of 2. Because the destination rectangle defaults to
the display area size, no destination rectangle coordinates are needed.

srcw Width of the source rectangle in pixels.

srcx Horizontal coordinate in pixels for the source rectangle’s left corner.

srcy Vertical coordinate in pixels for the source rectangle’s left corner.

Attributes for Defining Source and Destination Rectangles (continued)

Attribute Specifies

 (Table Page 2 of 2)
179

RealNetworks Production Guide
Part of the Source Image Filling All of the Display Area

To introduce this image with a fade, for example, you add the source
attributes to the <fadein/> tag:

<fadein start=“4“ duration=“3“ target=“2“ srx=”0” srcy=”0” srch=”128” srcw=”128”/>

Showing All of an Image in Part of the Display Area

In the next example, the source image displays in the upper-right quadrant of
the display area, effectively reducing the size of the source image by half. No
source coordinates are included, so the entire source image displays in the
destination rectangle.

25
6

256

128

128

Destination

25
6

256

Source

srcx="0" srcy="0" srch="128" srcw="128"

128

128
180

CHAPTER 7: RealPix Markup
All of the Source Image Filling Part of the Display Area

To paint the background, then wipe this image into the display area, for
instance, you use a <fill/> tag followed by a <wipe/> tag that includes the
destination attributes:

<fill color=”#E7651A” start=”9”/>
<wipe type=“push“ direction=“down“ start=“10“ duration=“3“ target=“2“
dstx=”128” dsty=”0” dsth=”128” dstw=”128”/>

Filling Part of the Display Area with Part of the Source Image

This example shows a portion of the source image displayed at a slightly larger
size in the display area. In this case, both source and destination coordinates
are needed to define the source and destination rectangles.

256

256

12
8

128

128

256

25
6

256

256

Destination

12
8

128

128

Source

dstx="128" dsty="0" dsth="128" dstw="128" 256

25
6

181

RealNetworks Production Guide
Part of the Source Image Filling a Part of the Display Area

To introduce this image with a fade, for example, you add the source and
destination attributes to the <fadein/> tag:

<fadein start=“1“ duration=“2“ target=“5“ srx=”0” srcy=”0” srch=”128” srcw=”128”
dstx=”64” dsty=”32” dsth=”192” dstw=”192”/>

RealPix Example
This section takes you through the process of creating a RealPix presentation
step-by-step. Be sure to read “Managing RealPix Bandwidth” on page 152
before you work through this example. To get playable RealPix sample files,
download the zipped HTML version of this guide as described in “How to
Download This Guide to Your Computer” on page 11, and view the Sample
Files page.

Step 1: Determine the Bandwidth Use

Suppose that you want to create a RealPix slideshow that contains five images.
You want to coordinate the images to a RealAudio background music clip that
lasts 3 minutes. You want the slideshow and audio to end after 1-1/2 minutes,
though, and to be available to viewers who have 56 Kbps dial-up modems.
According to the table “Maximum Streaming Rates” on page 46, you have 34
Kbps of available bandwidth that you can split between RealAudio and
RealPix.

19
2

256

256

128

128

192

3264

srcx="0" srcy="0" srch="128" srcw="128"
dstx="64" dsty="32" dsth="192" dstw="192"

256

Destination

256

Source

128

128

192

3264

19
2

182

CHAPTER 7: RealPix Markup
Choose the RealAudio Streaming Rate

The first step is to determine your RealAudio bandwidth. When you encode a
RealAudio clip with RealProducer, you can set an option that lowers the
RealAudio bandwidth for the 56 Kbps modem target audience from 32 Kbps
to 20 Kbps. (If you have RealProducer Plus, you can change this to any
available rate.) At the 20 Kbps RealAudio rate, the RealPix slideshow has 14
Kbps of bandwidth available (34-20=14).

If you plan to stream with Helix Server, use SureStream RealAudio, and select
one or more target audiences at higher bit rates. This enables viewers with
faster connections to get better audio quality. When using a Web server,
though, you cannot use SureStream.

Note: You can determine an audio clip’s streaming bit rate and
initial buffering time (preroll) by opening the clip in
RealPlayer, and giving the File>Clip Properties>Clip Source
command.

For More Information: See your RealProducer user’s guide or
online help for instructions on modifying RealAudio’s
streaming bit rate for a given target audience.

Determine the Image Bandwidth Requirements

Once you know your target bit rate for your RealPix images, add up the image
sizes to get a rough idea of whether your planned timeline is viable. Suppose
the following are the images you want to use:

The desired timeline is 90 seconds, with the presentation streaming at 14
Kbps. This means the slideshow can stream 1260 Kilobits (90 x 14) of image
data, which equals 157.5 Kilobytes (1250/8). The images add up to 194
Kilobytes, which will make the preroll fairly long. To lower the preroll, you can
either extend the timeline, or reduce the image file sizes. Suppose that

frog.jpg 24 Kilobytes

tiger.jpg 39 Kilobytes

cows.jpg 55 Kilobytes

elephant.jpg 38 Kilobytes

hippo.jpg 38 Kilobytes
183

RealNetworks Production Guide
through cropping, resizing, and higher JPEG compression, you modify the
images to these sizes:

The images now total 162 Kilobytes, which is acceptable because it is only
slightly over the 157.5 Kilobyte target. To better plan the timeline, it helps to
determine how long each image takes to stream, as shown in the table above.
To get these numbers, multiply each file size in Kilobytes by 8 to get Kilobits,
then divide by your target bit rate (14 Kbps in this example).

Step 2: Write the RealPix File

Once you have settled your bandwidth issues, you can write your RealPix file.
If you know how long it takes each image to stream, you can better adjust the
RealPix timeline to keep the preroll as low as possible. It helps to stream the
smaller images first, and to space each image out so that it doesn’t appear too
soon after the preceding image. The following timeline streams images in
order from smallest to largest:

Because the first image (frog.jpg) is scheduled to appear as soon as the
presentation starts, the timing will obviously cause at least an 11.4-second
preroll while the first image streams to RealPlayer. But, as you’ll see below, you
can mask this delay by starting the soundtrack before the images appear.

Tip: Keep in mind that the individual streaming times are only
a guide to developing the timeline. If an image has a 20-second
streaming time, it can still display 15 seconds after another
image. Helix Server will always stream all of the image data to

frog.jpg 20 Kilobytes 11.4 seconds to stream

tiger.jpg 35 Kilobytes 20 seconds to stream

cows.jpg 45 Kilobytes 25.7 seconds to stream

elephant.jpg 31 Kilobytes 17.7 seconds to stream

hippo.jpg 31 Kilobytes 17.7 seconds to stream

start=”0” frog.jpg 20 Kilobytes 11.4 seconds to stream

start=”20” elephant.jpg 31 Kilobytes 17.7 seconds to stream

start=”40” hippo.jpg 31 Kilobytes 17.7 seconds to stream

start=”60” tiger.jpg 35 Kilobytes 20 seconds to stream

start=”80” cows.jpg 45 Kilobytes 25.7 seconds to stream
184

CHAPTER 7: RealPix Markup
RealPlayer before the image is scheduled to display,
lengthening the presentation preroll if necessary.

The RealPix markup might look like the following, which creates a 300-pixel-
by-300-pixel display area, set a streaming bit rate of 14 Kbps, indicates a 90-
second duration, and introduces each image with a four-second fade. The size
parameters in the <image/> tags are not required when streaming with Helix
Server, but are included anyway to make Web server delivery possible.

<imfl>
 <head title="My RealPix Slideshow"
 author="Jane Morales"
 copyright="(c)2002 RealNetworks Media Productions"
 background-color="black"
 timeformat="dd:hh:mm:ss.xyz"
 duration="90"
 bitrate="14336"
 width="300"
 height="300"
 url="http://www.real.com"
 aspect="true"/>

 <image handle="1" name="frog.jpg" size=”20480”/>
 <image handle="2" name="elephant.jpg" size=”31744”/>
 <image handle="3" name="hippo.jpg" size=”31744”/>
 <image handle="4" name="tiger.jpg" size=”35840”/>
 <image handle="5" name="cows.jpg" size=”46080”/>

 <fadein start="0" duration="4" target="1"/>
 <fadein start="20" duration="4" target="2"/>
 <fadein start="40" duration="4" target="3"/>
 <fadein start="60" duration="4" target="4"/>
 <fadein start="80" duration="4" target="5"/>

</imfl>

Step 3: Write the SMIL File

To combine the RealPix slideshow with the RealAudio soundtrack, you write a
SMIL file that defines the overall presentation. Because RealPix is backwards-
compatible with earlier versions of RealPlayer, use SMIL 1.0 as long as you do
not need the enhanced features of SMIL 2.0. This ensures the widest possible
185

RealNetworks Production Guide
audience. The following sample SMIL 1.0 file combines the RealPix slideshow
(slideshow.rp) with the RealAudio clip (soundtrack.rm):

<smil>
 <head>
 <meta name="title" content="My RealPix Slideshow"/>
 <meta name="author" content="Jane Morales"/>
 <meta name="copyright" content="(c)2002 RealNetworks Media Productions"/>
 </head>
 <body>
 <par endsync=”id(pix)”>
 <audio src=”rtsp://helixserver.company.com/soundtrack.rm”/>
 <ref src=”rtsp://helixserver.company.com/slideshow.rp” id=”pix” begin=”15s”/>
 </par>
 </body>
</smil>

In this SMIL file, the endsync attribute in the <par> tag ends the presentation
when the RealPix slideshow ends, cutting off the RealAudio soundtrack. The
begin=”15s” attribute in the slideshow’s <ref/> source tag delays the RealPix
presentation from starting until 15 seconds after the soundtrack begins to
play. Helix Server uses that time to stream the RealPix slideshow’s preroll. This
helps the entire presentation start to play back faster.

Tip: It’s important always to test your presentation in an actual
streaming environment. This may lead you to modify your
timing parameters to make the presentation more efficient.

For More Information: For information about SMIL 1.0, see
RealSystem iQ Production Guide for Release 8, which is available
at http://service.real.com/help/library/encoders.html.
186

P A R T
IV

Par t IV: LEARNING SMIL
The heart of streaming media, SMIL is powerful, but easy to
learn. Start with Chapter 8, which covers the uses and structure
of a SMIL f ile, to begin mastering the basics of SMIL. Chapter 9
explains how to incorporate your clips into a presentation,
delving into various network protocols such as RTSP and HTTP.

C H A P T E R
8

 Chapter 8: SMIL BASICS
When your streaming presentation contains multiple clips—such as
a video and streaming text played together—you use Synchronized
Multimedia Integration Language (SMIL) to coordinate the parts.
Pronounced “smile,” SMIL is a simple but powerful markup
language for specifying how and when clips play. This chapter
introduces you to SMIL, its advantages, and its syntax rules.

Tip: For a streamlined introduction to basic SMIL features,
download Introduction to Streaming Media from
http://service.real.com/help/library/encoders.html.

For More Information: Once you are familiar with SMIL, you can
refer to “Appendix D: SMIL Tag Summary” beginning on page
561 when you write your SMIL files.

Understanding SMIL
Recommended by the World Wide Web Consortium (W3C), SMIL is designed
to be the standard markup language for timing and controlling streaming
media clips. SMIL works for a media player similar to the way that HTML
works for a Web browser. And just as HTML markup displays in any browser,
the standardized SMIL language fosters interoperability between media
players. You can find the official SMIL 2.0 specification at the W3C Web site:

http://www.w3.org/TR/smil20/

For More Information: To learn more about multiplayer support,
read “Interoperability Between SMIL-Based Players” on page
194.
189

RealNetworks Production Guide
Advantages of Using SMIL

SMIL enables you to create complex media presentations without using
scripting languages such as Javascript. Because scripting is not required, you
do not have to embed SMIL presentations in a Web page. Additionally, SMIL
presentations can play in RealPlayers that reside on consumer devices that do
not include browsers. The following points explain a few of the major
advantages of using SMIL:

• Stream clips located on different servers.

Because a SMIL file lists a separate URL for each clip, you can put together
presentations using clips stored on any server. You can use a video clip on
a Helix Server, for example, and an image clip on a Web server. Using
SMIL eliminates the need to merge multiple clips into a single streaming
file.

• Lay out a presentation.

When your presentation includes multiple clips, such as a RealVideo clip
playing simultaneously with subtitles written in RealText, you use SMIL
to arrange the various clips.

• Time and control a presentation.

SMIL provides powerful timing features that let you easily manage your
presentation’s timeline. You can keep clips rigidly synchronized, for
example, or start an audio clip playing at 2.5 seconds into its internal
timeline without changing the encoded clip.

• Layer transparent clips.

Using RealNetworks’ extensions to SMIL, you can easily add transparency
to clips, and stack them on top of each other. You can turn an opaque
graphic into a semi-transparent logo that hovers over a video, for example.

• Create interactive multimedia experiences.

Using SMIL’s advanced features, you can easily create interactive media
presentations, such as an audio or video jukebox that plays a different clip
each time the viewer clicks a button.

• Link to Web pages.

SMIL’s extensive hyperlinking capabilities allow you to link a streaming
presentation to other streaming clips, or to Web pages. Web pages can
display automatically at any time during the presentation, or may load
only when the viewer clicks a link.
190

CHAPTER 8: SMIL Basics
• Stream different presentations to different audiences.

SMIL lets you stream different clips to different audiences based on
criteria such as language preference or available bandwidth. This lets you
create multiple presentations, but still have just one link on your Web
page. When a viewer clicks that link, the viewer’s RealPlayer reads the
options in the SMIL file and chooses the appropriate presentation.

Note: SureStream also lets you support multiple bandwidth
connections within a single clip. For more information, see
“SureStream RealAudio and RealVideo” on page 49.

• Display special effects.

Using SMIL’s transition effects and animations, you can create special
effects, such as fading one clip into another, or moving a clip around the
screen. This lets you duplicate special effects found in advanced video
editing programs without making any changes to your streaming clips.

• Assemble customized presentations.

Because a SMIL file is a simple text file, you can generate it automatically
for each visitor. You can therefore create different presentation parts,
assembling a customized SMIL file for each visitor.

SMIL 1.0 and SMIL 2.0

SMIL 1.0 debuted in 1998. SMIL 2.0, introduced in 2001, updates and expands
the SMIL 1.0 capabilities. RealOne Player through RealPlayer 10 can play
SMIL 1.0 files and SMIL 2.0 files. RealPlayer G2, RealPlayer 7, and RealPlayer 8
can play only SMIL 1.0 files, though. If these older RealPlayers encounter a
SMIL 2.0 file, they autoupdate to RealPlayer 10 before displaying the
presentation. However, as described in “Combining SMIL 2.0 with SMIL 1.0”
on page 456, you can add SMIL 2.0 features to a SMIL 1.0 file that still plays in
RealPlayer 7 or 8.

Note: This guide describes SMIL 2.0 only. For information on
SMIL 1.0, see RealSystem iQ Production Guide for Release 8.

SMIL 2.0 Modules

SMIL defines a number of functional areas, such as timing and hyperlinking.
Each functional area breaks down into one or more modules. In turn, each
module defines certain attributes and values. The following table lists all the
191

RealNetworks Production Guide
SMIL 2.0 modules, and indicates whether RealPlayer supports them. You may
find this information useful if you are familiar with the SMIL 2.0
specification. You do not need to know this information to create a SMIL 2.0
presentation that plays in RealPlayer, however.

SMIL 2.0 Supported Modules

Functional Area Module Supported? Reference

Timing

AccessKeyTiming yes page 351

BasicInlineTiming yes page 316

BasicTimeContainers yes page 249

EventTiming yes page 340

ExclTimeContainers yes page 261

FillDefault yes page 336

MediaMarkerTiming yes page 354

MinMaxTiming yes page 322

MultiArcTiming yes page 344

RepeatTiming yes page 325

RepeatValueTiming yes page 346

RestartDefault yes page 354

RestartTiming yes page 354

SyncbaseTiming yes page 344

SyncBehavior yes page 252

SyncBehaviorDefault yes page 257

SyncMaster no n/a

TimeContainerAttributes yes page 329

WallclockTiming yes page 354

Time
Manipulations

TimeManipulations yes (animations only) page 439

Animation
BasicAnimation yes page 419

SplineAnimation no n/a

Content Control

BasicContentControl yes page 441

CustomTestAttributes no n/a

PrefetchControl yes page 469

SkipContentControl yes tbd
 (Table Page 1 of 2)
192

CHAPTER 8: SMIL Basics
SMIL 2.0 Profiles

SMIL also defines profiles, which are collections of modules that an application
can support. RealPlayer supports the SMIL 2.0 Language Profile, which
incorporates most of the SMIL modules listed in the preceding section. The
other main profile is the SMIL 2.0 Basic Profile, which is designed primarily
for smaller devices, such as mobile phones and portable disc players. The basic
profile requires support for only the following modules:

• BasicContentControl

• BasicInlineTiming

• BasicLayout

Layout

AudioLayout yes page 294

BasicLayout yes page 269

HierarchicalLayout yes page 297

MultiWindowLayout yes page 279

Linking

BasicLinking yes page 359

LinkingAttributes yes page 369

ObjectLinking no n/a

Media Objects

BasicMedia yes page 207

BrushMedia yes page 211

MediaAccessibility yes page 243

MediaClipping yes page 318

MediaClipMarkers yes page 354

MediaDescription yes page 240

MediaParam yes page 208

Metainformation Metainformation yes tbd

Structure Structure yes page 196

Transitions

BasicTransitions yes page 393

InlineTransitions no n/a

TransitionModifiers yes page 408

SMIL 2.0 Supported Modules (continued)

Functional Area Module Supported? Reference

 (Table Page 2 of 2)
193

RealNetworks Production Guide
• BasicLinking

• BasicMedia

• BasicTimeContainers

• MinMaxTiming

• RepeatTiming

• SkipContentControl

Interoperability Between SMIL-Based Players

Because SMIL is an standard markup language, any media player can adopt
SMIL as its means for coordinating media clips. Although this allows
interoperability between SMIL-based media players, it does not automatically
mean that every presentation created for RealPlayer can play in other SMIL-
based media players, and vice versa. The following sections explain differences
in SMIL presentations that may prevent them from playing in all SMIL-based
players.

SMIL Version

SMIL 1.0 and SMIL 2.0 differ significantly. Although most media players that
support SMIL 2.0 (including RealPlayer) can also play SMIL 1.0 files, media
players that support only SMIL 1.0 (including RealPlayer G2, RealPlayer 7, and
RealPlayer 8) cannot play SMIL 2.0 content. Be sure you know whether your
target media players support SMIL 1.0, SMIL 2.0, or both.

SMIL Profile

As described in “SMIL 2.0 Profiles” on page 193, a SMIL-based media player
can support different SMIL profiles. A media player that supports only the
smaller module set of the SMIL 2.0 Basic Profile will not handle all of the
attributes defined in the more robust SMIL 2.0 Language Profile. Hence, a
presentation developed for RealPlayer may not play to its full capacity in a
player based on the SMIL 2.0 Basic Profile. That player should just ignore the
SMIL attributes it does not support, however.

Clip Support

SMIL binds different types of clips together, and each SMIL-based media
player must also be able to play the presentation’s clips, regardless of the
player’s support for SMIL. For example, RealAudio and RealVideo clips are
194

CHAPTER 8: SMIL Basics
proprietary formats that play only in RealPlayer. For interoperability, you
must stream clips that all of your various target media players can play.

Note: Although RealPlayer can play proprietary formats used
by other media players, such as Windows Media and
QuickTime, it does not support the use of SMIL with these
formats. When streaming one of these formats to RealPlayer,
you must author presentations using the markup conventions
supported by Windows Media Player or QuickTime Player,
respectively.

Media Player Launch Methods

Viewers typically launch streaming media presentations through a Web page
hyperlink configured to start a specific player. For example, Web pages that
launch RealPlayer link to a Ram file (extension .ram), rather than to a SMIL
file. If you link directly to the SMIL file, the application registered with the
browser to handle the file extension .smil launches and attempts to play the
presentation. This is not recommended, however, because the launched
application may not be one of your target media players.

Tip: RealNetworks recommends that, even with a single SMIL
file that plays in multiple media players, you create a separate
Web page hyperlink to launch each of your target players. Your
viewers can then decide which player they want to use.

For More Information: For more about starting RealPlayer with a
Web page hyperlink, refer to “Launching RealPlayer with a
Ram File” on page 508.

Creating a SMIL File
This section explains the basics of SMIL markup, introducing you to the rules
you need to follow when creating a SMIL presentation. If you are familiar with
other Web-based markup languages, such as HTML, you will pick up SMIL
quickly. You need to be careful, though, because SMIL is less forgiving than
HTML. Lapses that may not matter in HTML markup, such as missing
quotation marks, missing slashes, or missing end tags, will prevent a SMIL file
from working properly.
195

RealNetworks Production Guide
Tip: You can write a SMIL file with any text editor that can save
the file as plain text. Save the file with the file extension .smil.
Do not include spaces in the file name.

Note: With many Web servers, you can use GZIP encoding for
large SMIL files. For more information, see “GZIP Encoding
for Large Text Files” on page 526.

The SMIL 2.0 Tag and Namespace

Rule 1: To create SMIL 2.0 files as described in this guide, the <smil> tag must
include the XML namespace for SMIL 2.0.

A SMIL file starts with a <smil> tag and ends with a </smil> tag. If the opening
tag is just <smil>, the file is SMIL 1.0:

<smil>
 ...SMIL 1.0 markup...
</smil>

To create a SMIL 2.0 file and use all the SMIL features described in this guide,
the <smil> tag must look like the following:

<smil xmlns=“http://www.w3.org/2001/SMIL20/Language”>
 ...SMIL 2.0 markup...
</smil>

SMIL is based on Extensible Markup Language (XML), which provides the
means for defining any number of standard or customized markup languages.
The xmlns attribute shown above defines an XML namespace. This namespace
has just one purpose: to tell RealPlayer that the file is SMIL 2.0 rather than
SMIL 1.0. The namespace identifier is in the form of a URL only to ensure
uniqueness. RealPlayer does not contact the URL.

Header and Body Sections

Rule 2: A SMIL body section is required, but the header section is optional.

Between the <smil> and </smil> tags, a SMIL file breaks down into two basic
subsections: the header and the body. The header is defined between <head>
and </head> tags, while the body section falls within <body> and </body> tags,
as shown here:
196

CHAPTER 8: SMIL Basics
<smil xmlns=“http://www.w3.org/2001/SMIL20/Language”>
 <head>
 ...optional section with all header markup...
 </head>
 <body>
 ...required section with all body markup...
 </body>
</smil>

The optional header section is used to give presentation information, to create
the layout, and to define features that are used repeatedly. To include a fade-
to-black transition effect in your presentation, for example, you first define
the transition type in the header. You can think of the header as defining your
presentation’s form.

The header section is optional because it’s not needed for very simple SMIL
files. The following SMIL presentation, for example, simply plays three audio
clips in sequence. Although the presentation could have a header section that
provides presentation information, it doesn’t need a layout or any other
features that must be defined in the header:

<smil xmlns=“http://www.w3.org/2001/SMIL20/Language”>
 <body>
 <audio src=”rtsp://helixserver.example.com/one.rm”/>
 <audio src=”rtsp://helixserver.example.com/two.rm”/>
 <audio src=”rtsp://helixserver.example.com/three.rm”/>
 </body>
</smil>

Within the required body section, you list the clips that you want to play,
creating your presentation timeline in the process. Within the body section,
you apply the features you defined in the header. For instance, you apply a
fade-to-black transition defined in the header to clips listed in the body. You
can think of the body as defining your presentation’s content and timeline.

The header and body may each have their own subsections. The header may
have a layout section defined between <layout> and </layout> tags, for example,
while the body section uses <par> and </par> tags to define clips that play
together. Other chapters in this guide describe the tags that you can use
within the header and body sections.
197

RealNetworks Production Guide
Tags, Attributes, and Values

Both the header and body of a SMIL file contain tags that have the following
form:

<tag attribute=”value”/>

Aside from the angle brackets and a possible closing slash, there are three
basic parts to a SMIL tag:

Rule 3: Lowercase or camel case text is required for most tags and attributes.

SMIL tags and attributes must be lowercase. When an attribute or predefined
value consists of a compound word, the first letter of all words after the first
word is generally capitalized, as in soundLevel or whenNotActive. This is referred
to as “camel case.”

A few attributes, such as root-layout , are hyphenated. These attributes carry
over from SMIL 1.0. They have been kept the same for consistency. Some new
SMIL 2.0 attributes, such as accesskey, are meant to be compatible with HTML
4.0 and, in accordance with the HTML 4.0 specification, do not capitalize
letters in compound words.

Rule 4: Attribute values must be enclosed in double quotation marks.

Attribute values, such as video_region in region=“video_region”, must be
enclosed in double quotation marks. Do not add any blank spaces between the
quotation marks and the value they enclose.

Rule 5: File names and paths must observe letter cases.

In clip source tags, paths and file names can be uppercase, lowercase, or mixed
case. All of the following path and file name examples are allowable, for
example:

tag The tag name comes just after a left angle bracket. Some tags may
consist of just the name, as in the <body> tag. Other tags may have
attributes.

attribute Each attribute defines one aspect of the tag. If a tag has several
attributes, the order of attributes doesn’t matter.

”value” Most SMIL attributes include an equals sign (=) followed by a value in
double quotation marks. In some cases, you choose from a list of
predefined values. In other cases, you define your own value. Values may
be integers, percentages, names, and so on, depending on what types of
values are appropriate for the attribute.
198

CHAPTER 8: SMIL Basics
<audio src=”rtsp://helixserver.example.com/song.rm”/>
<audio src=”rtsp://helixserver.Example.com/Song.rm”/>
<audio src=”rtsp://helixserver.example.com/SONG.rm”/>

However, the path and file name in the tag should match the clip’s path and
file name exactly as it appears on the server computer’s operating system. For
instance, the following clip source tag may not work if the clip is actually
named SONG.rm:

<audio src=”rtsp://helixserver.example.com/song.rm”/>

Binary and Unary Tags

Rule 6: All tags must have an end tag or close with a forward slash.

Some SMIL tags, called binary tags, have a corresponding end tag. For
example, the <body> tag has the end tag </body>. When a tag has no
corresponding end tag, it is called a unary tag, and it must close with a forward
slash as shown in this example:

<audio src=”first.rm”/>

Warning! Omitting a closing slash where it’s needed, or adding
it where it’s not required is one of the easiest ways to create an
error in a SMIL file. Take care always to include a closing slash
with a unary tag, and to leave it out of the first tag in a binary
pair.

Changing a Unary Tag to a Binary Tag

Several SMIL tags can be either binary or unary, depending on how they
operate. For example, a unary <video/> tag plays a video clip:

<video ...specifies a video to play, and closes with a forward slash... />

However, you can also include a hyperlink with <video/> tag to link the clip to
another clip or a Web page. To do this, you change the <video/> tag from unary
to binary so that it can enclose an <area/> tag, as shown here:

<video ...specifies a video to play, and uses an end tag... >
 <area ...defines an image map, and closes with a forward slash... />
</video>

This guide tells you which tags can be both unary and binary, and explains the
circumstances under which you use the unary or binary version.
199

RealNetworks Production Guide
SMIL Recommendations

Although not strict rules, the following recommendations will help you keep
your SMIL markup organized and understandable.

Recommendation 1: Use HTML-style comments to annotate your SMIL file.

As in HTML, SMIL has a comment tag that starts with these characters:

<!--

and ends with these characters:

-->

The ending does not include a forward slash:

<!-- This is a comment -->

A comment can be any number of lines long. It can start and end anywhere in
a SMIL file. Multiple comments cannot be nested, though. Use comments to
describe what various sections of your SMIL presentation are meant to do.
This helps other people understand your presentation more easily.

Recommendation 2: Use indentation to clarify how your SMIL file is organized.

Although indenting SMIL markup is not required, it helps you to keep track
of the SMIL file’s structure. You typically indent markup by pressing the Tab
key once for each level of indentation. In a clip group, for example, the group
tags are indented one level from the body tags, and the clip tags are indented
one level from the group tags, as shown here:

<body>
 <seq>
 <audio src=”rtsp://helixserver.example.com/one.rm”/>
 <audio src=”rtsp://helixserver.example.com/two.rm”/>
 </seq>
</body>

SMIL Tag ID Values

Any SMIL tag can have an ID in the form id=“value”. Some SMIL tags require
IDs. For example, each region in the layout requires an ID that you use to
assign clips to play in the region. For other tags, IDs are optional depending
on whether another SMIL element interacts with that tag. The following are
rules and suggestions that apply to the IDs of all SMIL tags:

• All IDs for all tags in a SMIL file must be unique. If you define several
<region/> tags, for example, each tag must have a unique ID. No <region/>
200

CHAPTER 8: SMIL Basics
tag can have the same ID as a <transition/> tag or a <video/> tag, for
instance.

• As with all SMIL values, IDs are case-sensitive. The attributes
id=“videoregion” and id=“videoRegion” are different, for example. It is a
good idea to follow a consistent practice, such as always making IDs
lowercase.

• Do not use words separated by spaces in an ID. If you use two or more
words for an ID, combine the words, or separate the words with an
underscore or hyphen, as in videoregion, video-region, or video_region.

• The first character for an ID can be a letter, a colon, or an underscore. It
cannot be a number or a special character such as an ampersand. You can
use numbers and special characters after the first character, however. For
example, you can use id=“video3” as an ID, but not id=“3video” .

• There is no minimum or maximum length for IDs.

• You may find it convenient to adopt a system for specifying IDs. You
might use the suffix _region for all region IDs, for example, or a transition_
prefix for all transition effect IDs.

Using Customized SMIL Attributes
SMIL can be customized, and RealNetworks has developed many extensions
to SMIL 2.0 functionality. SMIL regulates how customizations can be added,
though, to avoid potential conflicts between different media players. A
customized attribute always has a prefix, and takes the following form:

prefix:attribute=”value”

The prefix is user-defined, but the attribute name is always predefined. The
following is an example of RealNetworks’ backgroundOpacity attribute, using a
prefix of rn:

rn:backgroundOpacity=”50%”

When RealPlayer encounters this tag, it recognizes that backgroundOpacity is a
valid attribute, but not a standard SMIL attribute. It uses the rn prefix to
match the attribute to a namespace declared in the <smil> tag. The namespace
must therefore use the same user-defined prefix as the attribute. You can add
the additional namespace to the <smil> tag after the SMIL 2.0 namespace:

<smil xmlns=“http://www.w3.org/2001/SMIL20/Language”
xmlns:rn=“http://features.real.com/2001/SMIL20/Extensions”>
201

RealNetworks Production Guide
If RealPlayer recognizes the namespace, it knows how to handle the
customized attribute. This allows RealPlayer to support any number of
customized attributes developed by RealNetworks or other parties.

RealNetworks Extensions Namespace

RealNetworks has created many customized attributes that you can use in
SMIL 2.0 files played in RealPlayer. To use these attributes, you must declare
the following namespace in the <smil> tag:

xmlns:rn=“http://features.real.com/2001/SMIL20/Extensions”

This guide always uses rn: as the attribute prefix for RealNetworks extensions.
If you decide to use a different prefix, it’s best to use a short, single word, or
just a few letters.

System Component Namespace

The system component namespace allows you to mark elements that should
play only in RealPlayer. This lets you add SMIL 2.0 elements to a SMIL 1.0
presentation that can still play in RealPlayer 7 or 8. Unlike SMIL 2.0
namespaces, this namespace requires the use of the cv prefix:

xmlns:cv=“http://features.real.com/systemComponent”

For More Information: See “Combining SMIL 2.0 with SMIL 1.0”
on page 456 for an explanation of how to use this namespace.

A Closer Look at Namespaces

Namespaces and prefixes for customized attributes are not hard to declare and
use, but they can be confusing at first if you are not familiar with XML. The
following sections delve more deeply into namespaces and their associated
prefixes for those who want a better understanding of this issue. When in
doubt, though, just follow the examples in this guide, using the given prefixes
when defining a namespace and a custom attribute.

Why does SMIL use namespaces?

Each customized attribute is defined in conjunction with a unique namespace
so that SMIL-based media players can use different attributes that happen to
have the same name. An attribute named find might perform one function
when defined with one namespace, and a different function when defined
202

CHAPTER 8: SMIL Basics
with another namespace. This allows different parties to create customized
SMIL attributes without being concerned about duplicate attribute names.

Why are prefixes used?

A prefix ties an attribute to a namespace. Consider the example of two
different find attributes in the same SMIL file. When RealPlayer has to
interpret what a particular find attribute does, it matches the attribute to its
namespace through the prefix. If there were no prefix, RealPlayer would not
know which namespace goes with which attribute.

Why are prefixes user-definable?

If the parties who developed custom attributes also defined specific prefixes,
there could be duplicate attribute names and prefixes that RealPlayer could
not resolve. Suppose that two parties developed two new SMIL attributes,
both called fd:find, but each defined against a different namespace. If you used
both fd:find attributes in your presentation, RealPlayer would not know which
attribute goes with which namespace.

Because prefixes are user-definable, though, you could change the prefix for
one of the attributes, making it xy:find, for example. You would then use the
same xy prefix in the associated namespace so that RealPlayer could match
each find attribute to its namespace. This provides flexibility for parties
developing customized attributes, but it also places responsibility on the
SMIL author to match customized attributes to namespaces through prefixes.

Tips for Defining Namespaces

• To summarize, there are three required parts of a customized attribute:

• a user-defined attribute prefix such as rn:

• a predefined attribute and value pair that uses the prefix, such as
rn:backgroundOpacity=”50%”

• a predefined namespace that includes the user-defined prefix. The
attribute is always defined against a namespace, such as the
RealNetworks extensions namespace:

xmlns:rn=“http://features.real.com/2001/SMIL20/Extensions”

• Within the <smil> tag, you can declare each namespace on a separate line
for easier reading. SMIL ignores extra spaces, carriage returns, line breaks,
203

RealNetworks Production Guide
and tabs used simply to align text in a file. Just make sure that the closing
angle bracket of the <smil> tag appears after the last namespace.

• It’s OK to declare a namespace in the <smil> tag even if you don’t use any
customized attributes associated with that namespace.

• Support for a customized attribute must be built into a media player.
Other SMIL-based players may not support the same customized
attributes as RealPlayer, and vice versa. But if a SMIL-based media player
does not support a customized attribute, it simply ignores the attribute.

Viewing SMIL Source Markup
RealPlayer has a File>Clip Properties>Clip Source command that shows the
SMIL markup of the current presentation. Using this command is a good way
to learn how a SMIL presentation is put together. The Helix Server or Web
server hosting the presentation sends the markup as an HTML page that
opens in a RealPlayer pane, or your default Web browser.

Access to SMIL source information is denied for secure presentations that
require a user name and password. The Helix Server administrator may also
disallow access to the SMIL source file, or allow access to the source file but
conceal the full paths of clips. When access is allowed, the Web page showing
the SMIL syntax includes a hypertext link for each clip in the presentation.
Clicking a link displays a new Web page with information about the
corresponding clip, including its size, buffer time, and streaming bit rate.

Playback Differences from SMIL 1.0
If you have created SMIL 1.0 presentations for playback in RealPlayer G2,
RealPlayer 7, or RealPlayer 8, this section will help bring you up-to-date with
changes in SMIL 2.0.

Behavioral Changes

The SMIL 2.0 specification requires changes to RealPlayer’s handling of some
basic features that carry over from SMIL 1.0:

• RealPlayer now treats clips without internal timelines, such as images, as
having an intrinsic duration of 0 seconds. This means you must include a
dur or end attribute to make these clips display at all. For information on
durations, see “Setting Durations” on page 319.
204

CHAPTER 8: SMIL Basics
• A clip without a fill attribute defaults to fill=“auto”, which can be
equivalent to fill=“remove” or fill=“freeze” depending on the circumstance.
See “Setting a Fill” on page 329.

• In a <par> group, a fill=“freeze” attribute displays a clip only until the
group ends. If the presentation ends when the group ends, the clip does
not stay frozen on the screen as it did in SMIL 1.0. Instead, it is removed
once the group is no longer active. To display a clip after its group ends,
use fill=“hold” and erase=“never” in the clip tag. For more information on
these new attributes and values, see “Displaying a Clip Throughout a
Presentation” on page 332.

Updating SMIL 1.0 Files to SMIL 2.0

A SMIL 1.0 presentation created for an earlier version of RealPlayer will play in
RealOne Player or later. If you want to update a SMIL 1.0 presentation to
SMIL 2.0, however, you have to change the <smil> 1.0 tag to a SMIL 2.0 tag:

<smil xmlns=“http://www.w3.org/2001/SMIL20/Language”>

The following table provides a quick reference for changing other SMIL 1.0
tags and attributes to their SMIL 2.0 equivalents. Once you make these
changes, you can add any other SMIL 2.0 features to your presentation. Your
SMIL file will play only in RealOne Player or later, however.

Tag and Attribute Changes from SMIL 1.0 to SMIL 2.0

SMIL 1.0 Element SMIL 2.0 Tag or Attribute Reference

Layout Tags and Attributes

background-color backgroundColor page 292

Clip Source Tags and Attributes

?bitrate=nnnn <param name=”bitrate” value=”nnnn”
rn:delivery=”server”/>

page 208

?reliable=true <param name=”reliable” value=“true”
rn:delivery=”server”/>

page 210

?bgcolor=RRGGBB <param name=”bgcolor” value=”RRGGBB”/> page 225

Timing Tags and Attributes

repeat repeatCount page 325

clip-begin clipBegin page 318

clip-end clipEnd page 318

endsync=”id(ID)” endsync=”ID” page 323
 (Table Page 1 of 2)
205

RealNetworks Production Guide
Hyperlinking Tags and Attributes

<anchor/> <area/> page 362

show=“new” external=“true” sourcePlaystate=“play” page 373

show=“pause” external=“true” sourcePlaystate=“pause” page 373

target=”ID” URL#ID page 382

Switch Tag Attributes

system-bitrate systemBitrate page 448

system-language systemLanguage page 446

system-captions systemCaptions page 450

Tag and Attribute Changes from SMIL 1.0 to SMIL 2.0 (continued)

SMIL 1.0 Element SMIL 2.0 Tag or Attribute Reference

 (Table Page 2 of 2)
206

C H A P T E R
9

 Chapter 9: CLIP SOURCE TAGS
For every clip you play in your presentation, such as an audio clip,
video clip, or text clip, you add a source tag to your SMIL file. This
chapter explains the basics of clip source tags, explaining how to
write URLs that tell RealPlayer where to f ind clips. It also tells how
to modify certain characteristics, such as background transparency,
when clips play.

Creating Clip Source Tags
Each time you want a clip to appear in a presentation, you write a clip source
tag that tells RealPlayer where to find the clip. The source tag URL may point
RealPlayer to a clip on Helix Server, a Web server, or even the viewer’s local
computer. A typical clip tag looks like this:

<audio src=”rtsp://helixserver.example.com:554/audio/song1.rm”/>

Within each clip source tag, a src attribute lists the clip location. The section
“Writing Clip Source URLs” on page 213 explains how to specify a URL with
the src attribute. As described in subsequent chapters, clip source tags can also
contain other attributes that control clip timing and layout. The following
table lists the different clip source tags you can use in a presentation.

Clip Source Tags

Clip Tag Used For

<animation/> animation clips such as a Flash Player file (.swf)

<audio/> audio clips such as RealAudio (.rm)

<brush/> color block used in place of a clip
(See “Creating a Brush Object” on page 211.)

 JPEG (.jpg), GIF (.gif), or PNG images (.png)
(See “Setting a Clip’s Streaming Speed” on page 208.)

<ref/> miscellaneous clip type, such as RealPix (.rp) or Ram (.ram) file
 (Table Page 1 of 2)
207

RealNetworks Production Guide
The particular clip source tag you choose does not affect clip playback because
RealPlayer determines the actual clip type by other means. Specifying a video
clip with an <audio/> tag, for example, does not prevent RealPlayer from
recognizing that the clip contains video. Although using a tag appropriate to
the clip’s contents helps you keep track of clips, you could specify all clips
with <ref/> tags, for example. Other clip tags cannot be used in place of the
<brush/> tag, however.

Adding a Clip ID

RealNetworks recommends that every clip source tag include a user-defined
ID in the form id=“ID”. Clip IDs are not always necessary, but you will need to
use them when building complex presentations in which other SMIL elements
refer to clips. Clicking a hyperlink, for example, can start a clip playing. In this
case, the hyperlink uses the clip’s ID to identify which clip to start. RealPlayer
never displays IDs onscreen. Here is an example of a clip ID:

<video src=”video1.rm” id=”video1”/>

For More Information: For information about selecting ID
values, see “SMIL Tag ID Values” on page 200.

Setting a Clip’s Streaming Speed

Clips such as audio, video, and animation have a streaming speed set by the
tools used to encode or tune the clips. For these clips, never use SMIL to set a
streaming speed. For static clips such as images (GIF, JPEG, or PNG) and text
(static text files and streaming RealText files), however, you can use SMIL to
change the clip’s streaming bandwidth from the default of 12 Kilobits per
second (approximately 12000 bits per second). This works only when
streaming from Helix Server. With Web server hosting, there is no way to set a
static clip’s streaming speed.

<text/> static text clips (.txt) or inline SMIL text
(See “Adding Text to a SMIL Presentation” on page 225.)

<textstream/> streaming RealText clips (.rt)

<video/> video clips such as RealVideo (.rm)

Clip Source Tags (continued)

Clip Tag Used For

 (Table Page 2 of 2)
208

CHAPTER 9: Clip Source Tags
Tip: Small text files stream so quickly that they rarely interfere
with other clips. Therefore, you generally do not need to set the
streaming bandwidth for text files. You should set a streaming
bandwidth for image files larger than 5 Kilobytes, if the 12
Kbps default value is too high or too low for your target
audience.

For More Information: For background information on
streaming speeds, see “Audience Bandwidth Targets” on page
46 and “Clip Bandwidth Characteristics” on page 48.

Using the bitrate Parameter

To set a static clip’s streaming speed, you modify the clip source tag to use
binary tags, as described in the section “Binary and Unary Tags” on page 199.
Within the binary clip tag, you add a <param/> tag with the name bitrate,
specify the speed in bits per second, and include the customized attribute
rn:delivery=”server”, which requires that you declare the following namespace
in the <smil> tag:

xmlns:rn=“http://features.real.com/2001/SMIL20/Extensions”

The following example sets an image to stream at approximately 5 Kilobits per
second:

 <param name=”bitrate” value=”5000” rn:delivery=”server”/>

RealPlayer does not display an image clip until it has received all the clip’s
data, and the clip is scheduled to display according to the SMIL timeline. For
clips that have no intrinsic duration, such as images and text files (though not
RealText clips), you must specify a duration.

For More Information: For more on image durations, see
“Setting Durations” on page 319. For background on
customized attributes, see “Using Customized SMIL
Attributes” on page 201.

Example of Streaming Images Slowly

Using the bitrate parameter, you can set a high streaming speed for a clip to
take advantage of available bandwidth and stream the image quickly. Or you
can set a low bit rate to ensure that streaming the image does not interfere
with playing another clip at the same time. The following example shows three
209

RealNetworks Production Guide
sequential image files set to stream at 1000 Kbps to ensure that a video playing
in parallel does not stall:

<par>
 <video src=”video.rm” region=”video_region”/>
 <par>
 <seq>

 <param name=”bitrate” value=”1000” rn:delivery=”server”/>

 <param name=”bitrate” value=”1000” rn:delivery=”server”/>

 <param name=”bitrate” value=”1000” rn:delivery=”server”/>

 </seq>
 </par>
</par>

For More Information: For more on SMIL timing, see Chapter
13. Chapter 11 explains group tags such as <par> and <seq>.

Ensuring Reliable Clip Transmission

You can use the reliable value in a <param/> tag to indicate that a clip must be
delivered to RealPlayer under any circumstances. During extremely adverse
network conditions, Helix Server will halt the presentation if necessary rather
than drop the clip. The following example shows the reliable parameter set for
an image. Note that this parameter also requires the customized attribute
rn:delivery=”server”:

 <param name=”bitrate” value=”5000” rn:delivery=”server”/>
 <param name=”reliable” value=”true” rn:delivery=”server”/>

Tip: Use the reliable parameter sparingly, and only for small,
important elements of your presentation. Even without this
parameter, Helix Server generally ensures that very little data
loss occurs in transmission.

Warning! The reliable parameter is not for use with large clips
such as videos. These clips are designed to play well even if
210

CHAPTER 9: Clip Source Tags
some data is lost in transmission. Using the reliable parameter
with these clips may cause your presentation to stall.

Creating a Brush Object

The <brush/> tag lets you create a colored rectangle that displays in a region.
You can use it to paint over a clip, for example. You can also use it like a
background color. You might display a series of differently colored brush
objects in a region behind a video for example, introducing each new brush
object with a transition effect. To the viewer, the brush objects look like a
dynamically changing region background.

A brush object functions just like a clip source tag. For example, you can
control when the brush object appears by using SMIL timing commands, and
you can even change a brush object’s size and color with SMIL animation tags.
Because it does not link to an external clip, though, the <brush/> tag does not
use a src attribute. Instead, it uses a color attribute to define the color used:

<brush color=”blue” region=”region_1” dur=”5s”/>

Black is the default color for a brush object. To specify a different color, use a
predefined color name, a hexadecimal color value, or an RGB value.

For More Information: Appendix C explains the types of color
values that you can use with SMIL color attributes. For more
on transition effects and animations, see Chapter 16 and
Chapter 17, respectively.

Using a Ram File as a Source

A Ram file (.ram) is typically used to launch RealPlayer and give it the URL of
the clip or SMIL presentation to play. But you can also use a Ram file as a
source of content within a SMIL file. Because a Ram file can list several clips
in sequence, you may find it useful to specify a Ram file (a different Ram file
from the one used to launch the presentation) within your SMIL file.

To illustrate how a Ram file is useful, suppose that your main SMIL
presentation defines an online radio application that plays a preset song list
that changes daily. You could list all the songs within the SMIL file in a
sequence, like this:
211

RealNetworks Production Guide
<seq>
 <audio src=”song1.rm”/>
 <audio src=”song2.rm”/>
 ...more songs...
</seq>

Each day, though, you’d need to modify your main SMIL file to update the
playlist. It’s easier in this case to have the SMIL file request a Ram file through
a <ref/> tag:

<ref src=”http://www.example.com/dailysongs.ram”/>

Note: Use an HTTP URL like that shown above when listing a
Ram file as a source clip within a SMIL file. Helix Server does
not stream Ram files through RTSP.

You then modify the Ram file each day with your new playlist. The Ram file
simply gives the full URL to each song in the order in which they play:

rtsp://helixserver.example.com/song1.rm
rtsp://helixserver.example.com/song2.rm
...more songs...

When you use a Ram file as a source, you can add SMIL timing and layout
attributes to the <ref/> tag. In a playlist of videos, for example, you could
assign all the videos to play in the same region, which your main SMIL
presentation would define. Or you could use timing attributes to give the
entire sequence of clips a maximum duration, for instance. You cannot use
SMIL attributes within a Ram file, however.

For More Information: For more on Ram files, see “Launching
RealPlayer with a Ram File” on page 508. Note that a Ram file
can also list other Ram or SMIL files, as well as clips.

Using a SMIL File as a Source

A SMIL file can also use another SMIL file as a source. Unlike a Ram file, a
SMIL file can do more than list a simple sequence of clips. A secondary SMIL
file can play clips in parallel, for example, and use SMIL timing and layout
attributes to organize its clips. Simply use a <ref/> tag to refer to the secondary
SMIL file:

<ref src=”rtsp://helixserver.example.com/presentation2.smil”/>
212

CHAPTER 9: Clip Source Tags
Handling Layouts

When a primary and secondary SMIL file define layouts, you need to be
careful that the layouts do not conflict. In some cases, you can define a layout
only in your referenced SMIL file, not in the primary file. The section “Full
SMIL File Switching” on page 467 provides an example of this in the context
of SMIL switching.

When a referenced SMIL file contains visual clips, you can assign the file to a
single region defined in the primary SMIL file. For example, the following clip
source tag assigns the referenced SMIL file to region_1, which is defined
within the primary SMIL file:

<ref src=”rtsp://helixserver.example.com/presentation2.smil” region=”region_1”/>

In this case, it’s best to define the playback region in the primary SMIL file
(region_1) to be the same size as the root-layout area of the secondary SMIL
file. If the playback region and the secondary SMIL presentation are different
sizes, the playback region’s fit attribute determines how the SMIL
presentation fits the region.

For More Information: For information on defining layouts and
assigning clips to play in regions, see Chapter 12.

Using Timing Attributes

Timing attributes in the primary SMIL file can override the timeline of the
secondary SMIL file. Suppose that presentation2.smil lasts 10 minutes when
played by itself, but you set a 5-minute duration in the <ref/> tag in the main
SMIL file. In this case, the duration specified in the main SMIL file cuts off
the last half of presentation2.smil:

<ref src=”rtsp://helixserver.example.com/presentation2.smil” dur=”5min”/>

For More Information: Timing attributes are described in
Chapter 13.

Writing Clip Source URLs
Every clip source tag, except for a <brush/> tag, requires an src attribute that
provides the URL for the clip. RealPlayer uses this URL to request the clip
from a server. The URL you specify varies depending on whether the clip
resides on Helix Server, a Web server, or the viewer’s local machine.
213

RealNetworks Production Guide
Tip: As you develop a presentation on your computer, use local
URLs. Then put in a base URL, or specify full URLs for each
clip, when you are ready to stream your presentation. Chapter
21 explains how to move clips to a server and write a Ram file
to launch RealPlayer.

Linking to Local Clips

As you develop your presentation, it is easiest to keep your SMIL file and your
clips in the same directory on your local computer. Within your SMIL file, the
src parameter for each clip source tag can simply give the file name:

<audio src=”song1.rm”/>

Creating Relative Links to Other Directories

RealPlayer can also follow the same relative links that you can use in a Web
page. For example, the following src attribute specifies a clip that resides one
level below the SMIL file in the audio folder:

<audio src=”audio/song1.rm”/>

The following example specifies a clip that resides one folder level above the
SMIL file:

<audio src=”../song1.rm”/>

The next example creates a link to a clip that resides in an audio folder that is
at the same level as the folder that contains the SMIL file:

<audio src=”../audio/song1.rm”/>

Tip: You can find additional information about relative
directory syntax in an HTML reference guide.

Writing Absolute Links

Alternatively, you can use local, absolute links to specify exact locations. The
syntax for absolute links is the same as with HTML. It varies with operating
systems, however, and you should be familiar with the directory syntax for the
system you are using. For example, the following absolute link syntax works
for Windows computers, but not on Unix or the Macintosh. Note that it
includes three forward slashes in file:///, and uses forward slashes in path
names as well:

src=”file:///c:/audio/first.rm”
214

CHAPTER 9: Clip Source Tags
Creating a Base URL

When you are ready to stream your presentation, you can add a base URL to
your SMIL file. This is convenient if all or most of your clips reside on the
same server. This preserves the local, relative syntax you used when developing
your presentation, readying your presentation for streaming in a single step.
You add the base URL to the file in the SMIL header section through a
<meta/> tag as shown here:

<smil xmlns=“http://www.w3.org/2001/SMIL20/Language”>
 <head>
 <meta name=”base” content=”rtsp://helixserver.example.com/”/>
 ...layout information...
 </head>
 <body>
 <par>
 <audio src=”song1.rm”/>
 <textstream src=”lyrics/words1.rt” .../>

 </par>
 </body>
</smil>

Because the third clip in this example uses a full URL, the base target is
ignored. RealPlayer requests the image from the specified Web server using the
HTTP protocol. For the first two clips, however, the src values are appended to
the base target, effectively giving the clips the following URLs:

rtsp://helixserver.example.com/song1.rm
rtsp://helixserver.example.com/lyrics/words1.rt

Using a base target is highly recommended. If no target is given, RealPlayer
assumes that the clip paths are relative to the location of the SMIL file. In the
preceding example, for instance, RealPlayer would look for song1.rm in the
same directory that holds the SMIL file, requesting the clip with the same
protocol used to request the SMIL file.

Keep in mind that the base URL specifies both a location and a request
protocol. If, for example, your SMIL presentation includes both streaming
clips and HTML pages opened through SMIL, you can place your clips and
HTML pages in the same directory on Helix Server. However, if your base URL
uses rtsp://, you can’t use the base URL for the HTML pages, which require a
URL that starts with http://. In this case, use a fully-qualified HTTP URL for
each HTML page listed in your SMIL file.
215

RealNetworks Production Guide
Linking to Clips on Helix Server

When clips reside on Helix Server, use an RTSP URL in the base target. Or, you
can specify an RTSP URL in each clip’s src attribute. An RTSP URL in a clip
source tag looks like this:

<audio src=”rtsp://helixserver.example.com:554/audio/first.rm”/>

The following table explains the URL components. Your Helix Server
administrator can give you the Helix Server address, RTSP port, and directory
structure.

For More Information: For more information on RTSP, see “The
Difference Between RTSP and HTTP” on page 507.

Linking to Clips on a Web Server

To use a clip hosted on a Web server, use a standard HTTP URL in the base
target, or in each clip’s src attribute. Helix Server also supports the HTTP
protocol, but for clips streaming from Helix Server, you typically use the RTSP

Helix Server URL Components

Component Specifies

rtsp:// RTSP protocol. Although Helix Server also supports
HTTP, streaming clips typically use RTSP.

helixserver.example.com Helix Server address. This varies with each Helix Server. It
typically uses an identifier such as helixserver instead of
www. Or it may use a TCP/IP address (such as
172.2.16.230) instead of a name.

:554 Helix Server port for RTSP connections. Port 554 is the
default, so you can leave this out of URLs unless the Helix
Server administrator chose a different port for RTSP
communication. If the port number is required, separate
it from the address with a colon.

/audio/ Helix Server directory that holds the clip. The directory
structure may be several levels deep. Helix Server also uses
“mount points” that invoke certain features, such as
password authentication. Because these mount points
appear to be directories in the URL, the request path does
not mirror the actual directory path on the Helix Server
computer. The Helix Server administrator can tell you the
mount points and directories in the path.

first.rm Clip file name.
216

CHAPTER 9: Clip Source Tags
protocol or the specialized CHTTP protocol, which is described in the
following section. An HTTP URL in a clip source tag looks like this:

Warning! Although a Web server can host any clip, a Web server
cannot perform all the functions of Helix Server. For more
information, see “Limitations on Web Server Playback” on
page 527.

Caching Clips on RealPlayer

RealPlayer does not cache clips that play in the media playback pane by
default, but you can make it cache on disk any clips delivered through HTTP.
You may want to cache images used in different SMIL presentations that site
visitors play. An example is an Internet radio station that uses GIF logos and
on-screen buttons. As long as the GIFs reside in the RealPlayer cache, the
server does not have to resend the files if, for example, the user clicks a link
that opens a new SMIL presentation containing the same images.

Caching works only for files delivered through HTTP. You should not try to
cache large clips that would be served better through RTSP, such as video,
audio, Flash, and RealPix clips. (RealPlayer caches RealPix images in memory,
but not on disk, for the duration of the RealPix presentation.) Nor should you
cache ads or images that do not appear repeatedly in your presentation.

For More Information: For information about the caching of
content that displays in the related info pane, see “HTML Page
Caching” on page 35.

Using the CHTTP Caching Protocol

RealPlayer does not cache all items streamed by HTTP. Instead, you designate
files to cache by using chttp:// instead of http:// in the file URLs. When
RealPlayer reads a CHTTP URL in a SMIL file, it first checks its disk cache for
the file. If the file is not present, RealPlayer requests the file through HTTP,
storing the file in its cache. Because RealPlayer interprets a chttp:// URL as a
special instance of HTTP, caching works for any file stored on an HTTP-
compatible server.

If a file is stored in RealPlayer’s cache, RealPlayer reuses the file instead of
requesting it again from the server, as long as a CHTTP URL is used. The
cached version is not used, though, if the URL starts with http:// or differs in
217

RealNetworks Production Guide
any way from the original CHTTP URL. The following SMIL example
indicates that the specified GIF image should be downloaded and cached for
later use:

Example of Using CHTTP in a Presentation

When caching files, download the cached items before streaming other
elements. You can do this by placing the cached elements in a SMIL <seq>
group ahead of the streamed elements. In the following example, the two
logos quickly download before the RealVideo and RealText clips play. If the
visitor plays another presentation that also caches the two images, RealPlayer
first checks its cache. If it finds the images, it skips directly to the streaming
clips:

<smil xmlns=“http://www.w3.org/2001/SMIL20/Language”>
 ...header omitted...
 <body>
 <seq>
 <!-- First, download and cache these two logos. -->

 <param name=”bitrate” value=”20000” rn:delivery=”server”/>

 <param name=”bitrate” value=”20000” rn:delivery=”server”/>

 <par>
 <!--Second, stream these 2 clips in parallel. -->
 <textstream src=”rtsp://helixserver.example.com/news.rt” region=”news” .../>
 <video src=”rtsp://helixserver.example.com/newsvid.rm” region=”video1” .../>
 </par>
 </seq>
 </body>
</smil>

Controlling the RealPlayer Cache

Because RealPlayer supports the same HTTP header fields used to control file
expiration in Web browser caches, it can carry out caching directives set by
Web servers. Thus, you can reuse Web page images in RealPlayer presentations
without losing control of how these images are cached. This section describes
how to use HTTP headers to control the RealPlayer cache, and how RealPlayer
manages its cache. Documentation for most Web servers includes information
about how to set fields in HTTP header files.
218

CHAPTER 9: Clip Source Tags
Overriding Caching with Cache-Control

The Cache-Control command of an HTTP header file can override caching of a
RealPlayer file requested through chttp://. A file requested through CHTTP is
not cached if any of the following are present as meta-information in the
HTTP header file:

• Cache-Control:no-cache

• Cache-Control:no-store

• Cache-Control:private

• Cache-Control:must-revalidate

Cache Size and Expiration Rules

RealPlayer caches files within its home directory in a folder named cache_db.
This cache is independent of any Web browser cache. The default RealPlayer
cache size is 4 MB. Unless an HTTP header sets a file lifetime, the cached file
expires after 4 hours, although a subsequent request for a cached item restarts
the item’s expiration clock. As the cache fills, RealPlayer begins to delete
unexpired items to reclaim needed disk space on a first-in, first-out basis.

Note: RealPlayer users can control some aspects of RealPlayer’s
cache by disabling the cache, setting the amount of disk space
available for the cache, and emptying the cache. Users carry out
these actions through the RealPlayer preferences. For more
information, see the RealPlayer online help.

Changing the Lifetime of a Cached File

Within an HTTP header, you can have Cache-Control:max-age set the “time to
live” (TTL) for a cached file, overriding the default expiration time. Expressed
in seconds, the maximum age is added to the current time to yield the file’s
expiration time. This value must be between 60 seconds and one year. For
example:

Cache-Control:max-age=172800

If you do not use the Cache-Control:max-age field, you can have the Expires field
determine the file’s expiration time. The Expires field takes as an attribute a
date string that defines when the cached element expires, relative to the
caching computer’s clock. The date string is formatted as follows:

Expires= Wdy, DD Mon YYYY HH:MM:SS GMT

The weekday is optional. In the following two examples, the first example
includes a weekday designation, the second one does not:
219

RealNetworks Production Guide
Expires= Fri, 17 Mar 2000 19:37:09 GMT

Expires= 17 Mar 2000 19:37:09 GMT

The weekday and month abbreviations are as follows:

Note: The entry is not cached if the value in the Expires: field
predates the current date and time.

Modifying Clip Colors
The clip color attributes summarized in the following table are primarily for
images in the GIF, JPEG, or PNG format. They can also be used for dynamic
clips, though, especially those that include transparency, such as Flash clips.
They should not be used for streaming video, however. Note that because
these attributes are specific to RealPlayer, other SMIL-based media players
may not recognize them.

For More Information: Appendix C explains the types of color
values you can use with SMIL color attributes.

Adjusting Clip Transparency and Opacity

Two customized attributes let you add transparency to all opaque colors in a
clip (rn:mediaOpacity), or adjust transparency in just the clip’s background
color (rn:backgroundOpacity). You can use these attributes separately or
together. Using either of these attributes requires that you declare the
following namespace in the <smil> tag:

Day of week: Mon, Tue, Wed, Thu, Fri, Sat, Sun

Month: Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec

Clip Streaming and Color Attributes

Attribute Value Function Reference

rn:backgroundOpacity percentage Adjusts background transparency. page 221

bgcolor nnnnnn Substitutes color for transparency. page 225

rn:chromaKey color_value Turns selected color transparent. page 222

rn:chromaKeyOpacity percentage Adds opacity to chromaKey. page 222

rn:chromaKeyTolerance color_value Widens range of chromaKey. page 222

rn:mediaOpacity percentage Makes opaque colors transparent. page 221
220

CHAPTER 9: Clip Source Tags
xmlns:rn=“http://features.real.com/2001/SMIL20/Extensions”

For More Information: For the basics of namespaces, see “Using
Customized SMIL Attributes” on page 201.

Adding Transparency to All Opaque Colors

The attribute rn:mediaOpacity in a clip source tag causes opaque areas in the
clip to become transparent. The attribute takes a percentage value in the range
from 0% (fully transparent) to 100% (fully opaque). In the following example,
the opaque areas of a GIF image are rendered partially transparent, making
them blend with a region’s background color or an underlying clip:

Note: If a clip is 50 percent or more transparent (that is, it has a
value from 0 to 50 for rn:mediaOpacity), hyperlinks defined for
the clip will not work. Clicking the clip will open hyperlinks on
clips beneath the partially transparent clip, however. Chapter
15 explains SMIL hyperlinks.

Creating Transparency in a Clip’s Background Color

Using the rn:backgroundOpacity attribute, you can modify the opacity of a clip’s
background, making the background color more transparent or more opaque.
This attribute works only for clips that designate a specific background color,
such as GIF, PNG, or RealText clips. It does not work for clips like JPEG
images or RealVideo clips that do not explicitly specify a background color.

The rn:backgroundOpacity attribute takes a percentage value in the range from
0% (fully transparent) to 100% (fully opaque). In the following example, the
background color specified in the image’s palette, which may be fully opaque
or fully transparent, is rendered partially opaque:

If the background color is partially transparent already, rn:backgroundOpacity
increases the opacity. If a clip’s background is 50 percent transparent already,
for example, using rn:backgroundOpacity=”50%” adds another 50 percent to the
opacity, making the background 75 percent opaque.

Tip: If a clip’s background is fully opaque, you can use just
rn:mediaOpacity to render the background and all other colors
transparent. If the clip’s background is partially transparent
already, rn:mediaOpacity will not affect the background, and you
221

RealNetworks Production Guide
can use both rn:mediaOpacity and rn:backgroundOpacity in the
same clip tag.

Substituting Transparency for a Specific Color

For clips that do not include native transparency, such as JPEG images and
Flash clips, you can use three attributes to define a color (rn:chromaKey), or a
range of colors (rn:chromaKeyTolerance), that RealPlayer renders transparent or
partially transparent (rn:chromaKeyOpacity). Using these attributes requires
that you declare the following namespace in the <smil> tag:

xmlns:rn=“http://features.real.com/2001/SMIL20/Extensions”

For More Information: For background on customized
attributes, see “Using Customized SMIL Attributes” on page
201.

Selecting a Color to Render Transparent

You can use rn:chromaKey to specify one (and only one) color that RealPlayer
will render transparent. In the following example, the hexadecimal color
#808080 is made transparent in a JPEG clip:

Tip: You can specify colors by using any color value described
in Appendix C. For example, the preceding attribute could use
the RGB value “rgb(128,128,128)” instead of the hexadecimal
“#808080”.

Using Partial Transparency

You can use the rn:chromaKeyOpacity attribute to make the color value selected
by rn:chromaKey partially transparent instead of fully transparent. The
chromaKeyOpacity attribute uses a percentage value from 0% (the default value
of full transparency) to 100% (fully opaque). In the following example, the
selected color is rendered 50 percent transparent instead of fully transparent:

Expanding the Transparency Range

To achieve the desired transparency effect, you may need to use the attribute
rn:chromaKeyTolerance to widen the range of colors selected by rn:chromaKey.
Although rn:chromaKeyTolerance uses a value that looks like a single color
222

CHAPTER 9: Clip Source Tags
designation, the value actually specifies a range of colors around (both above
and below) the rn:chromaKey value.

The following example uses rn:chromaKey to turn the hexadecimal color
#808080 transparent. The rn:chromaKeyTolerance attribute specifies a 1-value
tolerance both above and below the designated red value of 80. So in this case,
the colors #7F8080 and #818080 are rendered transparent along with #808080:

Setting Red, Green, and Blue Tolerances

In most cases, you’ll want to specify tolerance ranges for red, green, and blue.
When you do this, only the colors that fall within the overall range set by all
the designated tolerances are rendered transparent. For example, the following
three attribute pairs are all equivalent, but use different color values, which are
described in Appendix C:

rn:chromaKey=”rgb(128,128,128)” rn:chromaKeyTolerance=”rgb(1,2,3)”
rn:chromaKey=”rgb(50%,50%,50%)” rn:chromaKeyTolerance=”rgb(0.4%,0.8%,1.2%)”
rn:chromaKey=”#808080” rn:chromaKeyTolerance=”#010203”

All of the preceding examples define a 1-value tolerance around the specified
red value, a 2-value tolerance around the designated green value, and a 3-value
tolerance around the selected blue value. Therefore, the colors that have the
following RGB values are rendered transparent:

• red RGB values 127-129

(red hexadecimal values of 7F, 80, and 81)

–And–

• green RGB values 126-130

(green hexadecimal values of 7E, 7F, 80, 81, and 82)

–And–

• blue RGB values 125-131

(blue hexadecimal values of 7D, 7E, 7F, 80, 81, 82, and 83)

So, for example, the following colors would be rendered transparent because
they fall within the range specified by all three tolerance settings:

• rgb(127,128,130), which is equivalent to hexadecimal #7F8082

• rgb(128,129,125), which is equivalent to hexadecimal #80817D
223

RealNetworks Production Guide
However, the following colors would not be rendered transparent because they
fall outside the overall range defined by all the red, green, and blue tolerance
values:

• rgb(126,126,126), which is equivalent to hexadecimal #7E7E7E

This color is not rendered transparent because the red value falls outside
the designated red tolerance, even though the green and blue values fall
within the designated green and blue tolerances.

• rgb(127,128,132), which is equivalent to hexadecimal #7F8084

This color is not rendered transparent because the blue value falls outside
the designated blue tolerance, even though the red and green values fall
within the designated red and green tolerances.

Tips for Expanding the Color Transparency Range

• The rn:chromaKeyTolerance attribute is always used in conjunction with
rn:chromaKey. If you use rn:chromaKeyTolerance without also specifying
rn:chromaKey, the rn:chromaKeyTolerance value is ignored.

• Although you can use any type of color value described in Appendix C for
rn:chromaKeyTolerance , RGB percentages are generally the simplest means
for expanding the transparency range. Instead of precisely determining in
advance the range of colors you want to render transparent, select your
rn:chromaKey value, then widen the range with a small percentage value:

rn:chromaKey=”rgb(45,199,132)” rn:chromaKeyTolerance=”rgb(5%,5%,5%)”

Check the results by playing the SMIL file in RealPlayer, and adjust the
various percentage values through trial and error until you achieve your
desired result.

• As explained in the preceding section, a color must fall within the full
range of the red, green, and blue tolerances to be rendered transparent. If
you want to match all values for red, green, or blue, set its respective
tolerance to the maximum. Consider the following equivalent examples:

rn:chromaKey=”rgb(128,128,128)” rn:chromaKeyTolerance=”rgb(1,255,255)”

rn:chromaKey=”#808080” rn:chromaKeyTolerance=”#01FFFF”

Both of these examples render transparent any color that has a red value
in the RGB range of 127 to 129 (7F, 80, 81), regardless of that color’s blue
and green values.
224

CHAPTER 9: Clip Source Tags
Substituting a Color for Transparency

For clips that include transparency, such as GIF and PNG images, you can use
bgcolor to substitute a color for the transparency. This attribute uses a
<param/> tag, requiring the use of binary clip source tags. The value must be a
hexadecimal color value without a leading pound sign (#), as shown in this
example:

 <param name=”bgcolor” value=”BB21AA”/>

For More Information: For background information on binary
tags, see “Binary and Unary Tags” on page 199.

Adding Text to a SMIL Presentation
Within the RealPlayer media playback pane, a SMIL presentation can display
text in three different ways:

• RealText clip (.rt)

Chapter 6 explains RealText markup, which is the most powerful way to
add text to your presentation. Within the SMIL presentation, SMIL
timing and layout commands determine where and when the RealText
clip displays relative to other clips. As the RealText clip plays, though, its
own markup controls where and when text displays within its assigned
SMIL region.

• Plain text clip (.txt)

RealPlayer can also display plain text files within SMIL regions, which you
may find adequate for simple text needs. For details, see “Displaying a
Plain Text File” on page 226 and “Changing Text Characteristics” on page
229.

• Text within the SMIL file

RealPlayer supports the inclusion of text directly within the SMIL
markup. Called inline text, this feature is useful for annotating a SMIL
presentation, or creating simple, interactive buttons. For more
information, see “Writing Inline Text” on page 227 and “Changing Text
Characteristics” on page 229.
225

RealNetworks Production Guide
Tip: RealPlayer can also display HTML text in its related info
and media browser panes. For information on opening an
HTML page in one of these panes, see “Linking to HTML
Pages” on page 373.

Displaying a Plain Text File

To add a plain text file to a SMIL presentation, you refer to the file in a clip
source tag, as shown here:

<text src=”http://www.example.com/textfile.txt” region=”region2” dur=”40s”.../>

As with any other type of clip, you can assign a text file to a SMIL region and
use SMIL timing commands to control when the text file displays. By default,
a text file appears as black text on a white background, using the default text
font, size, and character set for the computer running RealPlayer.

For More Information: See “Changing Text Characteristics” on
page 229 for information about changing the font, color, size,
and character set of a plain text clip.

Tips for Using a Plain Text File

• RealPlayer displays carriage returns, tabs, and extra spaces entered in a
plain text file.

• Like a still image, a plain text file does not have an intrinsic duration. If
the text file plays in a sequence or exclusive group, set an explicit clip
length in the <text/> source tag with the end or dur attribute. In a parallel
group, a text file that uses no SMIL timing attributes plays for as along as
the group is active.

For More Information: For more on durations, see “Setting
Durations” on page 319.

• All characters entered in the text file are treated literally, meaning that
escape codes (%20, for example) or HTML commands (< , for instance)
display as text.

• RealPlayer flows the text file’s line length to the width of the SMIL region
that displays the text file. It changes this line length and ref lows the text if
the region width changes because, for example, the viewer resizes the
media playback pane manually. Resizing the region or media playback
pane does not make the text itself larger or smaller, however.
226

CHAPTER 9: Clip Source Tags
For More Information: For more on region sizes, see “Defining
Region Sizes and Positions” on page 283. As described in
“Controlling Resize Behavior” on page 281, you can prevent
certain SMIL regions from resizing.

Writing Inline Text

Inline text, which is defined within the SMIL file, is useful for short text
blocks that annotate the SMIL presentation. You can also combine inline text
with advanced SMIL timing commands to create interactive buttons. For long
text, however, it is easier to use either a plain text file as described above, or a
RealText clip as described in Chapter 6. Inline text appears as black text on a
white background, using the default text font, size, and character set for the
computer running RealPlayer. You can change these characteristics, however,
as described in “Changing Text Characteristics” on page 229.

You create inline text with a <text/> tag, specifying the text through the tag’s
src attribute. Two formats for the src parameter are acceptable. The first
format is the following:

src=“data:text/plain,...text here...”

The second, shorter format, which you can use because the SMIL 2.0 default
MIME type for data URLs is text/plain, is used for examples in this guide:

src=“data:,...text here...”

Note that both formats start with data: and must include a comma before the
actual text. For example, to display the following text in the SMIL file:

This is Inline Text

you would create the following <text/> tag, assigning the inline text to a SMIL
region and adding SMIL timing commands:

<text src=”data:,This%20is%20Inline%20Text” region=”text_region” .../>

Note that you must use the escape character %20 to represent a space. As
explained below, you must use additional escape characters to represent other
characters within inline text.
227

RealNetworks Production Guide
Using Inline Text Escape Characters

The following table lists the text characters that you can add to inline text only
through their corresponding escape codes. Entering one of these characters
directly in the inline text string creates an error in RealPlayer.

You can enter other common text characters, such as commas, periods, and
colons directly into the src value of the inline text. Conversely, you can display
any text character, including letters and numbers, by using an escape code that
starts with % followed by the character’s ASCII hexadecimal value. You can
create an asterisk (*) with the escape code %2A , for example.

For More Information: Visit http://www.asciitable.com/ for a
full list of ASCII codes.

Tips for Using Inline Text

• Do not press Enter to create a carriage return when entering inline text in
the SMIL file. The carriage return is read as an unescaped space, which
causes an error. To display text on a new line, use the carriage return and
line feed escape codes of %0D%0A.

Text Characters Requiring Escape Codes

Name Character Escape Code

ampersand & %26

backslash \ %5C

carat ^ %5E

carriage return %0D

double quote “ %22

greater than sign > %3E

left bracket [%5B

less than sign < %3C

line feed %0A

percent sign % %25

plus sign + %2B

pound sign # %23

right bracket] %5D

space %20

tab %09
228

CHAPTER 9: Clip Source Tags
• Because an inline text clip does not have an intrinsic duration, you should
set a clip length in the <text/> source tag with the end or dur attribute. For
more on durations, see “Setting Durations” on page 319.

• RealPlayer sets the inline text line length to the width of the SMIL region
that displays the text file. It changes this line length and ref lows the text if
the region width changes because, for example, the viewer resizes the
media playback pane manually. Resizing the region or media playback
pane does not make the text itself larger or smaller, however.

For More Information: For more on region sizes, see “Defining
Region Sizes and Positions” on page 283. As described in
“Controlling Resize Behavior” on page 281, you can prevent
certain SMIL regions from resizing.

• The only region fit value that affects inline text is fit=“scroll” , which adds
scroll bars to long text. With any other fit value, text that is too long to
display in the region fully is cut off at the region’s bottom border. The fit
attribute is described in “Fitting Clips to Regions” on page 303.

• Because inline text functions like a clip, you can use it with advanced
timing features to turn the inline text into a button that starts another
clip when clicked, for example. You can also use transition effects, SMIL
animations, and the background opacity attributes.

Changing Text Characteristics

Plain text files and inline text clips use the computer’s default character set
and font. Text is black on a white background. Using <param/> tags, however
you can change the fonts, colors, character sets, and other characteristics. This
requires that you turn your <text/> tag into a binary tag as described in
“Binary and Unary Tags” on page 199. You can then use the name and value
pairs listed in the following table.

<param/> Tag Names and Values for Plain Text and Inline Text

Name Values Function Reference

backgroundColor name|#RRGGBB Sets the background color. page 232

charset character_set Defines the character set. page 230

expandTabs true|false Replaces tabs with spaces. page 234
 (Table Page 1 of 2)
229

RealNetworks Production Guide
Note: Text characteristics appear only with RealOne Player
version 2 and higher. Version 1 of RealOne Player ignores the
<param/> tags, but displays the text clip with its default
characteristics. Text characteristics set through <param/> tags
cannot be modified by SMIL animations.

Tip: Text characteristics such as the font choice, bolding, text
size, and so on apply to the entire text clip. To change
characteristics for text blocks, by italicizing some words but
not others, for example, you need to use RealText as described
in Chapter 6.

Choosing a Character Set

Using plain text files and inline text, you can write in many European, Middle
Eastern, and Asian languages. To do so, you may need to use the charset
parameter to specify a character set listed in the following table. The character
set must be installed on the viewer’s computer for text to display properly. For

fontBackground
Color

name|#RRGGBB Sets the color behind the
text.

page 232

fontColor name|#RRGGBB Selects the font color. page 232

fontFace font_name Determines the font used. page 232

fontPtSize point_size Sets a specific point size. page 233

fontSize -2|-1|+0|+1|+2|+3|+4
or
1|2|3|4|5|6|7

Sets the font relative or
absolute size.

page 233

fontStyle italic|normal Italicizes text. page 233

fontWeight 100-900|bold|normal Turns text bold. page 233

hAlign left|center|right Aligns text horizontally. page 234

vAlign top|center|bottom Aligns text vertically. page 234

wordWrap true|false Turns off word wrapping. page 234

<param/> Tag Names and Values for Plain Text and Inline Text (continued)

Name Values Function Reference

 (Table Page 2 of 2)
230

CHAPTER 9: Clip Source Tags
example, Japanese text will not display on computers that do not have the x-

sjis character set installed.

Using the Viewer’s Default Character Set

If you do not specify the character set, the text file or clip uses the default
character set installed on the viewer’s machine. You can often leave the
character set unspecified if you and your audience speak the same language.
For example, most English-speaking audiences have us-ascii or iso-8859-1
installed as their default character set.

Plain Text and Inline Text Character Sets

Character Set Language Support

iso-8859-1 Western European languages, including English, Spanish, French,
German, Dutch, Italian, and Scandinavian languages (for more
information, see “iso-8859-1” on page 125)

iso-8859-2 Eastern European languages, including Czech, Hungarian, Polish,
and Romanian

iso-8859-5 Cyrillic text for languages including Russian, Bulgarian, Serbian,
and Ukrainian

iso-8859-6 Arabic alphabet

iso-8859-7 Modern Greek

iso-8859-8 Hebrew and Yiddish

iso-8859-9 Turkish

iso-8859-11 Thai

iso-8859-13 Baltic languages, including Latvian and Estonian

us-ascii American English (you can also use iso-8859-1)

mac-roman Accented European characters entered on a Macintosh (for more
information, see “mac-roman” on page 126)

x-sjis Japanese

hangeul Korean

ksc5601 Korean (identical to hangeul)

johab Korean

big5 Traditional Chinese

gb2312 Simplified Chinese

windows-1251 Cyrillic text

koi8-r Cyrillic text

iso-ir-166 Thai
231

RealNetworks Production Guide
Multilingual audiences may use multiple character sets, however, which can
cause problems if you do not specify the character set. For example, some
viewers may have both iso-8859-1 and iso-8859-2 installed. If iso-8859-2 is the
default, Western European languages will not display correctly if you do not
explicitly specify iso-8859-1 as the character set.

Selecting a Font

Using the fontFace parameter, you can specify any screen font on the viewer’s
machine. Some fonts require specific character sets. The Osaka font for Kanji
characters requires the x-sjis character set, for example. If you do not set the
font, the text clip uses the default font on the viewer’s computer. If the viewer
does not have the specified font installed, the computer substitutes a font
(typically the default display font). The following example shows inline text
specifying a character set and font:

<text src="data:,This%20is%20inline%20text." region="text_region" dur="8s">
 <param name="charset" value="iso-8859-1"/>
 <param name="fontFace" value="System"/>
</text>

Tip: For samples of fonts used with RealText, see “Setting the
Font” on page 127. Keep in mind, though, that RealText uses
only a predefined set of fonts, whereas plain text files and
inline text clips can use any screen font installed on the
viewer’s computer.

Choosing Font Colors

By default, text displays in black on a white background. Within separate
<param/> tags, you can use fontColor to set the font letter color, and
backgroundColor to specify the clip’s background color. You can also use
fontBackgroundColor to create a third color that appears behind the text, but
does not fill the entire window, as does backgroundColor. For all color values,
choose color names or hexadecimal values as described in Appendix C. The
following example shows a plain text file that displays in a yellow font on a
blue background:

<text src="plain.txt" region="text_region" dur="8s">
 <param name="fontColor" value="yellow"/>
 <param name="backgroundColor" value="blue"/>
</text>
232

CHAPTER 9: Clip Source Tags
Tip: To place text on top of a graphic image, render the text
background transparent with rn:backgroundOpacity=”0%” in the
<text/> tag. For more information, see “Creating Transparency
in a Clip’s Background Color” on page 221.

Note: The fontBackgroundColor parameter does not currently
work with RealPlayer on the Macintosh.

Setting Font Sizes

Two <param/> tag attributes, fontPtSize, and fontSize , let you set the text size.
For fontPtSize you specify an exact point size, such as 36. The fontSize attribute
uses the same size indicators used in RealText, which are listed in the table
“RealText Font Sizes” on page 130. Use either fontPtSize or fontSize for a text
clip, but not both. Here are two examples:

<text src="data:,This%20is%20inline%20text." region="text_region1" dur="8s">
 <param name="fontPtSize" value="36"/>
</text>

<text src="data:,This%20is%20inline%20text." region="text_region2" dur="8s">
 <param name="fontSize" value="+2"/>
</text>

Bolding or Italicizing Text

For fontWeight, you can specify normal (the default), bold, or a value from 100 to
900, in which 100 is thin text, 400 is normal text, 700 is bold, and 900 is thick,
dark text. For fontStyle, you can use normal (the default) or italic. Note that you
cannot bold or italicize just parts of a text clip. Here is an example of a bolded
plain text file:

<text src="plain.txt" region="text_region" dur="8s">
 <param name="fontWeight" value="bold"/>
</text>

Note: Not all numeric values affect all fonts. Some fonts
support only normal and bold appearances. In this case, you
won’t see a difference between the values 100 and 400, or the
values 700 and 900. With other fonts, though, the differences
may be pronounced.
233

RealNetworks Production Guide
Turning off Word Wrap

By default, a plain text file or inline clip automatically wraps to fit its assigned
SMIL region so that no text is cut off at the region’s right edge. The text may
be truncated at the region’s bottom edge, though, if there is too much text, or
its font size is too large to fit inside the region. You can turn off word
wrapping by adding a wordWrap parameter with the value false:

<text src="plain.txt" region="text_region" dur="8s">
 <param name="wordWrap" value="false"/>
</text>

Ignoring Tabs

RealPlayer recognizes tabs in the text clip. To turn off tabbing, use the
expandTabs parameter with a value of false. Each tab is then rendered as a
single space:

<text src="plain.txt" region="text_region" dur="8s">
 <param name="expandTabs" value="false"/>
</text>

Aligning Text

The hAlign parameter aligns an inline text clip or text file horiziontally. It can
use the value left (the default), center, or right to align the text f lush-left,
center, or f lush-right within its SMIL region, respectively. The vAlign
parameter uses the value top (the default), center, or bottom to align the text
vertically. Using vAlign requires that you set wordWrap to false. You cannot use
both hAlign and vAlign with a single text clip.

Note: Currently, vertically aligned text does not recognize
carriage returns in plain text clips, or carriage return and line
feed escape codes (%0D%0A) in inline text. You can therefore
align only a single line of text.
234

P A R T
V

Par t V: ORGANIZING A PRESENTATION
Using SMIL, you can pull together simple or highly complex
presentations. Chapter 10 shows how to make presentations
accessible to all viewers. Chapter 11 explains how to group clips
together to set up the basic presentation timeline. You’ll also
need to know how to organize the onscreen layout, as described
in Chapter 12.

C H A P T E R
10

 Chapter 10: PRESENTATION INFORMATION
RealPlayer provides several means for delivering information about
a presentation, such as its title, author, and copyright. This chapter
covers these information features, and explains the accessibility
features available for sight-impaired persons.

Understanding Presentation Information
There are several types of presentation information available. Some types
augment other types, some types override other types, and some types are
available only to viewers who have devices that read accessibility information.

Information Encoded in Clips

Many clips have their own encoded information. When you create a RealVideo
or RealAudio clip, for example, you can have RealProducer encode certain
types of information into the clip. Some of this information is used only by
Internet search engines, but some is read by RealPlayer. The following are the
most common types of information encoded into clips for display by
RealPlayer:

• title

• author

• copyright

• abstract (also called “description”)

In general, it’s good practice always to encode information in the clip. This
ensures that important information, such as a copyright, is present if the clip
is not streamed using SMIL. Encoded information is the most basic level of
presentation information, but you can override it using SMIL.
237

RealNetworks Production Guide
For More Information: See the documentation for your
production tool for instructions on how to encode
information into a clip.

Clip Source Tag and Group Information

A SMIL clip source tag, such as <video/> or <ref/>, can define title, author,
copyright, and abstract information for the clip. There are two main
advantages to defining this information in SMIL:

• You can provide information for any clip, which is handy for clips that do
not encode any information internally.

• The SMIL information overrides the encoded clip information, letting
you modify information without re-encoding the clip.

You can also define title, author, copyright, and abstract information for
groups. This information then overrides the information defined for the
individual clips. When several clips play in parallel, for example, RealPlayer
does not display the title for each clip individually. You may therefore want to
define a single group title that RealPlayer displays while the group is active.

For More Information: The section “Adding Clip and Group
Information” on page 240 describes how to add information to
clip source tags and group tags. For more on groups, see
Chapter 11.

SMIL Presentation Information

Within a SMIL file, you can define information for the entire presentation.
This information supplements the clip or group information, but does not
override it. This enables you to present two-levels of information to viewers:

• The presentation information lasts for the entire presentation.

• The clip or group information lasts only as long as each clip or group
plays.

Like clip information, the presentation information can give the title, author,
copyright, and abstract. But you can also define any other information you
wish through the header section <meta/> tags.

For More Information: The section “Defining Information for
the SMIL Presentation” on page 242 explains how to write the
<meta/> tags.
238

CHAPTER 10: Presentation Information
Accessibility Information

The accessibility features define a different class of information. RealPlayer
typically does not display this information. Instead, the information is read by
assistive devices used by sight-impaired persons. This information can help
these viewers choose which clips to play, and which links to click.

For More Information: See “Adding Accessibility Information”
on page 243 for more information on these features.

RealPlayer Related Info Pane

RealPlayer has a built-in related info pane meant for displaying information as
a presentation plays. Through SMIL, you can open HTML pages in the related
info pane at any point in a presentation. This HTML page can augment the
presentation information described in this chapter.

For More Information: See “Opening HTML Pages in the Related
Info Pane” on page 375 for more information.

Coded Characters

In a SMIL header section, or within clip attribute values, quotation marks,
apostrophes, ampersands, and angle brackets are interpreted as syntax
markers. You need to use codes to have these characters show up as text in
RealPlayer. As shown in the following table, codes begin with an ampersand
(“&”) and end with a semicolon (“;”). SMIL interprets these codes the same
way as popular Web browsers.

For example, to add the following as a title:

Multimedia’s <smil> & you

SMIL Coded Characters

Code Character Example

" quotation mark "

& ampersand &

' apostrophe ’

< left angle bracket (”less than” sign) <

> right angle bracket (”greater than” sign) >
239

RealNetworks Production Guide
You enter this in the SMIL file:

”"Multimedia's <smil> & you"”

Adding Clip and Group Information
The SMIL title, author, copyright, and abstract attributes let you add
information to clip source tags and the <seq> and <par> group tags. This
information overrides any similar information encoded within the clip itself.
The following table summarizes these descriptive attributes.

Each attribute takes a text string for its value. The following example shows
the general form these attributes take in a clip source tag:

<ref src=”...” title=“title” author=“name” copyright=“date” abstract=“abstract”/>

Where Title, Author, and Copyright Information Displays

Whether information is encoded in the clip, or added through SMIL or a Ram
file, it appears in the following areas of RealPlayer:

• Title, author, and copyright information for a clip or group crawls
horizontally along the title bar at the top of RealPlayer, unless the SMIL
file also uses presentation information as described in “Defining
Information for the SMIL Presentation” on page 242. In this case, only the
presentation information appears in the title bar.

• Clip or group title and author information appears in the “Now Playing”
list, which is part of the RealPlayer media browser pane. Viewers can
double-click a clip or group listing to play that clip. For an example of this
list, see the figure “RealPlayer ‘Now Playing’ List” on page 36.

• Clip title information appears in the recent clips list under the RealPlayer
File menu, unless the SMIL file also includes a presentation title as

Clip and Group Information Attributes

Attribute Value Function

abstract clip_abstract Sets a summary displayed in the “Now Playing” list.

author author_name Defines the author name.

copyright copyright_notice Provides a copyright notice.

title title_text Creates a title for the “Now Playing” list.
240

CHAPTER 10: Presentation Information
described in “Defining Information for the SMIL Presentation” on page
242. In this case, only the presentation title appears in the list.

• Clip title, author, and copyright information appears when the viewer
gives the File>Clip Properties>View Clip Info command (Ctrl+i).

Tip: You can use any combination of title , author, copyright, and
abstract attributes in each group or clip source tag, but
RealNetworks highly recommends that you always include title
attribute values. If a title is not encoded in the clip or specified
through a title attribute, the clip’s file name is used instead.

Using Clips Within Groups

When you have a sequence of individual clips, you can display title and author
information in the “Now Playing” list by omitting a <seq> tag, as described in
“Creating Sequences Without Sequence Tags” on page 250. When you leave
the <seq> tag out, as shown in the following example, the individual clip titles
display in RealPlayer:

<body>
 <audio id=”clip1” title=”This is Clip 1” .../>
 <audio id=”clip2” title=”This is Clip 2” .../>
 ...
</body>

When you group clips within a <seq>, <par>, or <excl> tag, the clip titles are
ignored. You should therefore add title, author, and copyright information to
the group tag, as shown in the following example:

<body>
 <seq title=”This is Sequence 1”>
 <audio id=”clip1” .../>
 <audio id=”clip2” .../>
 ...
 </seq>
</body>

As these examples illustrate, the use of <seq> and <par> tags affects whether
group or clip information displays in RealPlayer. This, in turn, affects whether
viewers can select parts of the SMIL presentation through clip or group
listings in the “Now Playing” list:

• If all of your clips and groups are contained within a single <seq>, <par>, or
<excl> group, no individual clip or group titles display in the “Now
241

RealNetworks Production Guide
Playing” list, and viewers cannot select portions of the presentation
through that list.

• If no single <seq>, <par>, or <excl> group encloses all other clips or groups,
individual clip and group titles display in the “Now Playing” list according
to the order in which the clips and groups are listed in the SMIL file.

Defining Information for the SMIL Presentation
Whereas clip source tags and group tags can define information about each
clip or group, the SMIL file header can use <meta/> tags to define
information, such as title, author, and copyright, for the entire presentation.
Each <meta/> tag uses two attributes, name and content, as shown in the
following example, which defines title, author, and copyright information:

<head>
 <meta name="title" content="Bob and Susan Discuss Streaming Media"/>
 <meta name="author" content="RealNetworks Media Productions"/>
 <meta name="copyright" content="(c)2001 RealNetworks"/>
</head>

Tip: Name values, as in name=“title”, must be lowercase. When
defining long content such as an abstract, don’t use line breaks
or tabs within a content value.

The presentation information displays in the following areas of RealPlayer:

• Title, author, and copyright information for a presentation crawls
horizontally along the title bar at the top of RealPlayer.

• Presentation title and author information appears in the “Now Playing”
list, which is part of the RealPlayer media browser pane. For an example of
this list, see the figure “RealPlayer ‘Now Playing’ List” on page 36.

• Presentation title, author, and copyright information displays when the
viewer gives the File>Clip Properties>View Clip Info command, as
illustrated in the following figure.
242

CHAPTER 10: Presentation Information
Presentation Information

Example of Presentation and Clip Information

The following SMIL example defines both presentation and clip information:

<smil xmlns=“http://www.w3.org/2001/SMIL20/Language”>
 <head>
 <meta name="title" content="Bob and Susan Discuss Streaming Media"/>
 <meta name="author" content="RealNetworks Media Productions"/>
 <meta name="copyright" content="(c)2001 RealNetworks"/>
 </head>
 <body>
 <video src="clip1.rm" title="Bob Expounds His View"/>
 <video src="clip2.rm" title="Susan Responds with Another Perspective"/>
 <video src="clip3.rm" title="Summary: A Look at the Future"/>
 </body>
</smil>

Because the sequence of video clips does not use a <seq> tag, the individual
clip titles display in the “Now Playing” list, indented below the presentation
title, as shown in the figure “RealPlayer ‘Now Playing’ List” on page 36.

Adding Accessibility Information
Although the clip, group, and presentation information attributes always
display in RealPlayer, the accessibility attributes function only with assistive
reading devices used by visually impaired viewers. The following table
summarizes the attributes that help make your presentation accessible to all
243

RealNetworks Production Guide
viewers. RealNetworks encourages you to add these attributes to your
presentation.

Including an Alternate Clip Description

Each clip source tag can include an alt attribute that uses short, descriptive
text as its value. This alt value displays in RealPlayer when the viewer moves
the screen pointer over the clip. It is good practice always to include an alt
attribute for each clip. In the following example, the text “Introductory Video”
displays when the viewer moves the screen pointer over the clip:

<video src=”video1.rm” alt=”Introductory Video”/>

Note: Unlike browsers that display image alt text before the
images are downloaded, RealPlayer does not display alt text for
clips before they play.

Tip: If the clip includes hyperlinks, the link’s alt value or URL
displays in place of the clip’s alt text. For more on alt in
hyperlinks, see “Displaying Alternate Link Text” on page 372.

Using a Long Description

Each source tag can include a longdesc attribute that supplements the alt
attribute. Some assistive-reading devices can read this long description for
visually-impaired viewers. If you turn the clip into a hyperlink as described in
Chapter 15, the description should describe the link destination. Here is an
example:

<img src=”button3.gif” longdesc=”This is the third navigation button. Clicking it
opens your browser to the home page for RealNetworks.” .../>

Accessibility Attributes

Attribute Value Function Reference

alt text Provides alternate text. page 244

longdesc text Gives a long description to assistive reading devices. page 244

readIndex integer Sets the order in which clip information is read. page 245
244

CHAPTER 10: Presentation Information
Setting the Clip Read Order

When a visually-impaired viewer uses an assistive-reading device, the device
typically reads the values of the title, alt , and longdesc attributes in each clip
source tag. When clips play in parallel, the device reads the attributes in the
order that the clip tags appear in the <par> group. To change this order, you
can add readIndex attributes to the clip source tag. Each readIndex attribute,
which has a default value of 0, takes a positive integer as a value. Here is an
example:

<par>

 <video ... alt=”Presentation Video” readIndex=”0”/>
</par>

In the example above, the video source tag has the lowest readIndex value, so
an assistive device reads that clip’s alt attribute information first. Next, the
device reads the first image’s alt and longdesc attributes, followed by the
second image’s alt and longdesc attributes.

Note: If two or more source tags have the same readIndex value,
clip information is read according to the order that the clip
source tags appear in the markup.

For More Information: The section “Playing Clips in Parallel” on
page 251 describes parallel groups.
245

RealNetworks Production Guide
246

C H A P T E R
11

 Chapter 11: GROUPS
Grouping clips is the fundamental way to organize a presentation
timeline. For example, you can play clips one after another, or
display several clips at the same time. This chapter describes how to
use the basic group tags to organize a presentation. Once you
understand how groups work, you can use the timing commands
described in later chapters to modify group behavior.

Understanding Groups
Within a SMIL presentation, you can organize clips into three types of groups.
The presentation can have any number of these groups:

• sequences

In a sequence, clips play one at a time, one after the other. When one clip
stops, the next clip begins, and so on until the sequence finishes. In SMIL,
a <seq> tag indicates the start of a sequence. A corresponding </seq> tag
denotes the end of the sequence. The section “Playing Clips in Sequence”
on page 249 explains sequences.

• parallel groups

In a parallel group, all clips play together. For example, a parallel group
could include a video and a RealText clip that provides subtitles. When
you create a parallel group, you need to define a layout that specifies
where each clip appears onscreen. A <par> tag starts a parallel group, and a
</par> tag ends the group. See the section “Playing Clips in Parallel” on
page 251 for more information.

• exclusive groups

In an exclusive group, only one clip plays at a time. This type of group is
typically created for interactive presentations. For example, a presentation
may include several buttons, each of which selects a different video.
Depending on which button the viewer clicks, a different clip from the
247

RealNetworks Production Guide
group is selected. An exclusive group is created between <excl> and </excl>
tags. The section “Creating an Exclusive Group” on page 261 explains
exclusive groups.

Groups Within Groups

One of the powerful features of SMIL is the ability to nest groups within
groups. For example, you can combine <seq> and <par> tags in various ways to
create many types of presentations. The organization of these tags greatly
affects playback, though, and you need to be careful when creating deeply
nested groups. In the following example, clip 1 plays first. When it finishes,
clip 2 and clip 3 play together. When both clip 2 and clip 3 have finished
playing, clip 4 plays:

<seq>
 clip 1
 <par>
 clip 2
 clip 3
 </par>
 clip 4
</seq>

You get very different results, though, if you switch the <seq> and <par>
groupings. In the next example, clips 1, 2, and 4 all begin at the same time.
When clip 2 finishes, clip 3 starts:

<par>
 clip 1
 <seq>
 clip 2
 clip 3
 </seq>
 clip 4
</par>

The following illustration shows the difference between these groupings.
248

CHAPTER 11: Groups
Different Playback Results with Nested Groups

Playing Clips in Sequence
A sequence is the simplest type of group to create. Just list the clips within
<seq> and </seq> tags in the order that you want them to play. The following
example shows the entire SMIL markup required to play three audio clips in
sequence:

<smil xmlns=“http://www.w3.org/2001/SMIL20/Language”>
 <body>
 <seq>
 <audio src=”song1.rm”/>
 <audio src=”song2.rm”/>
 <audio src=”song3.rm”/>
 </seq>
 </body>
</smil>

In the preceding example, the second clip begins when the first clip finishes,
and the third clip begins when the second clip finishes. A sequence can
include any number of clips, and the clips can be of any type. You could add a
RealVideo or Flash clip to the sequence shown above, for example. When using

Timeline

Example 1

Example 2
249

RealNetworks Production Guide
visual clips, however, you should also define a layout as described in Chapter
12.

When you enclose clips in <seq> and </seq> tags, RealPlayer treats the
sequence as a single presentation. If each clip in the preceding example is two
minutes in length, for example, the RealPlayer status bar indicates that the
presentation is six minutes long. Because RealPlayer treats the sequence as a
single presentation, viewers can use the timeline slider to seek through all the
clips, but cannot choose individual clips through the RealPlayer Play>Next
Clip command.

Creating Sequences Without Sequence Tags

It is not always necessary to group clips within <seq> and </seq> tags.
Whenever clips are not listed in a group, RealPlayer automatically plays them
in sequence. For instance, the following markup, which has no <seq> and
</seq> tags, plays three audio clips in sequence just like the preceding example:

<smil xmlns=“http://www.w3.org/2001/SMIL20/Language”>
 <body>
 <audio src=”song1.rm”/>
 <audio src=”song2.rm”/>
 <audio src=”song3.rm”/>
 </body>
</smil>

When you do not use a <seq> group, however, RealPlayer treats each clip as a
separate presentation. Suppose that each clip in the preceding example lasts
two minutes. When the sequence starts, the RealPlayer status bar indicates
that the presentation lasts two minutes. When the first clip ends, RealPlayer’s
timeline slider resets, the second clip starts, and the status bar indicates
another two-minute presentation. This action repeats when the third clip
plays. At any point, the viewer can select a different clip with the RealPlayer
Play>Next Clip command.

Tips for Creating Sequences

• A <seq> tag can include a title, author, copyright, or abstract attribute just
like a clip source tag. For more information, see “Adding Clip and Group
Information” on page 240.
250

CHAPTER 11: Groups
• A sequence and each clip within a sequence can use a begin attribute to
delay playback. For more information, see “Setting Begin and End Times”
on page 316.

• A sequence and each clip within a sequence can use a dur attribute to
control the total playing time. For more information, see “Setting
Durations” on page 319.

• You can use the repeatDur and repeatCount attributes to repeat a sequence
or a clip within a sequence. See “Repeating an Element” on page 325 for
more information.

• Because clip source tags as well as the <seq> tag can have timing attributes,
it is easier to set all necessary timing attributes in the clip source tags first,
so that they operate as you want them to within the sequence. Then, after
determining how long the sequence will last, use timing attributes within
the <seq> tag to modify the group behavior if necessary.

Playing Clips in Parallel
You can play two or more clips at the same time by grouping the clip source
tags between <par> and </par> tags. The following example creates a parallel
group that combines a RealVideo clip with a RealText clip:

<smil xmlns=“http://www.w3.org/2001/SMIL20/Language”>
 <head>
 <layout>
 ...region layout defined as described in Chapter 12...
 </layout>
 <body>
 <par>
 <video src=”song.rm” region=”region1_ID”/>
 <textstream src=”lyrics.rt” region=”region2_ID”/>
 </par>
 </body>
</smil>

In the preceding example, the RealVideo and the RealText clips play at the
same time. A parallel group can include any number of clips, but you need to
define a playback region for each visual clip as described in Chapter 12. (Audio
clips do not need to play in regions.) Each region defined in the layout must
have a unique id=“ID” attribute. You then assign each clip to a region with a
region=“ID” attribute in the clip source tag.
251

RealNetworks Production Guide
Tips for Creating Parallel Groups

• When you create parallel groups, you need to be careful that clips playing
at the same time do not exceed the audience connection’s maximum
bandwidth, which is described in “Audience Bandwidth Targets” on page
46. If the maximum streaming bandwidth is 34 Kbps, for example, do not
have two clips that each stream 20 Kbps of data play in parallel.

• When a parallel group contains a still image, RealPlayer does not play the
group until it has received all of the image data. If you set too low of a
streaming speed for an image, therefore, you may delay group playback.
See “Setting a Clip’s Streaming Speed” on page 208 for more information.

• A <par> tag can include a title, author, copyright, or abstract attribute just
like a clip source tag. For more information, see “Adding Clip and Group
Information” on page 240.

• A parallel group normally lasts as long as the longest clip in the group.
However, you can modify this with the endsync attribute, as described in
“Ending a Group on a Specific Clip” on page 322.

• A parallel group and each clip within the group can use a begin attribute
to delay playback. For more information, see “Setting Begin and End
Times” on page 316.

• A parallel group and each clip within the group can use a dur attribute to
control the total playing time. For more information, see “Setting
Durations” on page 319.

• You can use the repeatDur and repeatCount attributes to repeat a parallel
group. See “Repeating an Element” on page 325 for more information.

• By using readindex attributes, you can change the order that assistive
reading devices read attributes of clips in parallel groups. See “Setting the
Clip Read Order” on page 245 for more information.

Synchronizing Playback in Parallel Groups
Under normal circumstances, Helix Server keeps clips within a parallel group
synchronized, as long as you have authored your presentation so that its
timeline runs smoothly, and it doesn’t consume more bandwidth than its
target audience has available. The following table summarizes the optional
252

CHAPTER 11: Groups
attributes you can add to elements within parallel groups to modify playback
behavior, especially under adverse conditions.

Creating an Independent Timeline

Adding syncBehavior=“independent” to a clip in a parallel group keeps the clip
completely unsynchronized from other clips in the group. In fact, the clip acts
like a live broadcast. Moving the RealPlayer timeline slider does not fast-
forward or rewind the clip. In the following parallel group, the RealText clip
has an independent synchronization behavior. It begins to play along with the
RealAudio and Flash clips, but if the viewer fast-forwards or rewinds the
presentation, only the RealAudio and Flash clips are affected:

<par>
 <audio src=”soundtrack.rm” .../>
 <ref src=”training.swf” .../>
 <textstream src=”translation.rt” syncBehavior=“independent” .../>
</par>

Note that a parallel group’s overall timing still applies to a clip that uses
syncBehavior=”independent”. In the following example, the parallel group plays
first, lasting for five minutes because of the dur attribute in the <par> tag. A
video then follows the group in sequence. If the viewer moves the timeline
slider to the five-minute mark, for instance, all clips in the parallel group end,
and the video plays. So even if it lasts 10 minutes, the RealText clip ends when
the group ends, regardless of its syncBehavior=”independent value:

<body>
 <seq>
 <par dur=”5min”>
 <audio src=”soundtrack.rm” .../>

Parallel Group Synchronization Attributes

Attribute Value Function Reference

syncBehavior canSlip|default|
independent|locked

Determines if clips can fall out
of synchronization.

page 253

syncBehavior
Default

canSlip|independent|
inherit|locked

Sets default synchronization
for a group.

page 257

syncTolerance default|time_value Loosens synchronization for
locked elements.

page 259

syncTolerance
Default

default|time_value Sets a default synchronization
tolerance for a group.

page 259
253

RealNetworks Production Guide
 <ref src=”training.swf” .../>
 <textstream src=”translation.rt” syncBehavior=“independent” .../>
 </par>
 <video src=”conclusion.rm” .../>
 </seq>
</body>

The independent value is the only syncBehavior value that has a visible effect on
how a parallel group plays under normal circumstances. As described in the
following sections, the other syncBehavior values affect clips in a parallel group
only under difficult streaming conditions.

Setting the Synchronization Behavior

RealPlayer generally compensates well for changing network conditions to
keep a presentation streaming smoothly. Under highly adverse conditions,
though, it may have to suspend playback of a group until more data arrives.
With the syncBehavior attribute, you can influence how RealPlayer handles
these situations. Think of these attributes as defensive measures: they don’t
affect how your presentation plays under normal circumstances, just how it
handles adverse situations. The following table describes the attribute values.

syncBehavior Attribute Values

Value Function

canSlip RealPlayer can suspend playing this clip as long as necessary until
more clip data arrives. It then fast-forwards the clip so that it catches
up with the group timeline. Other clips continue playing without
regard to the state of this clip.

locked The clip must stay synchronized with the group. If the clip’s data
stream stops, RealPlayer halts the group playback until new clip data
arrives. You can also add a tolerance value, as described in “Loosening
the Synchronization for Locked Elements” on page 259.

independent Clip playback is entirely independent of group playback. See “Creating
an Independent Timeline” on page 253.

default The clip behavior is controlled by the group tag’s syncBehaviorDefault
attribute, as described in “Specifying Synchronization Behavior
Default Values” on page 257. You do not need to set this value
explicitly if you also set a syncBehaviorDefault value because clips
will inherit the default value automatically.
254

CHAPTER 11: Groups
Note: If you do not set any syncBehavior values, elements behave
as if they are set to the canSlip value.

Synchronizing Clips

In most cases, you’ll want to use a combination of canSlip and locked as the
syncBehavior value for clips within parallel groups. Consider the following
example, in which a Flash clip, a RealAudio clip, and a RealText clip play in
parallel. This example could be a training movie in which the Flash animation
displays visual information, the RealAudio clip provides an audio narration,
and the RealText clip supplies translated audio subtitles:

<par>
 <audio src=”soundtrack.rm” syncBehavior=“locked” .../>
 <ref src=”training.swf” syncBehavior=“canSlip” .../>
 <textstream src=”translation.rt” syncBehavior=“locked” .../>
</par>

The Flash clip in the preceding example can slip, meaning that RealPlayer will
suspend playback for this clip first if bandwidth drops too low. RealPlayer will
resume playing the clip when more bandwidth is available. At that point, it
will fast-forward the Flash clip to bring it into synchronization with the
RealAudio and RealText clips. The viewer will notice that the Flash clip has
paused, but the audio and the subtitles will continue to play as long as
conditions do not get too bad.

The RealAudio soundtrack and the RealText subtitles in the preceding
example are locked with the group. This means that RealPlayer does
everything it can to keep these clips synchronized and flowing smoothly. As
described above, RealPlayer first suspends the Flash clip if necessary. If that
action does not provide enough bandwidth, and the RealAudio stream also
runs dry, RealPlayer halts the entire group until it has received enough data to
continue playing the RealAudio and the RealText clips. It brings the Flash clip
up to the group’s current position whenever conditions allow.

Synchronizing Groups

Just as you can synchronize clips within groups, you can also synchronize
groups within groups. Suppose that the preceding example is modified so
that it plays a sequence of RealAudio clips, rather than just one clip, in parallel
with the Flash and RealText clips:
255

RealNetworks Production Guide
<par>
 <seq syncBehavior=“locked”>
 <audio src=”soundtrack1.rm” .../>
 <audio src=”soundtrack2.rm” .../>
 <audio src=”soundtrack3.rm” .../>
 </seq>
 <ref src=”training.swf” syncBehavior=“canSlip” .../>
 <textstream src=”translation.rt” syncBehavior=“locked” .../>
</par>

In the preceding example, the syncBehavior attribute is used in the <seq> tag to
lock the entire sequence of RealAudio clips with the parallel group. Because of
group nesting, synchronization can become complex, as shown in the
following abstract example:

<par id=”master_group”>
 <ref id=”clip_A” syncBehavior=”locked” .../>
 <par id=”group_X” synchBehavior=”locked” .../>
 <ref id=”clip_B” synchBehavior=”locked” .../>
 <ref id=”clip_C” synchBehavior=”canSlip” .../>
 </par>
 <par id=”group_Y” syncBehavior=”canSlip”>
 <ref id=”clip_D” synchBehavior=”locked” .../>
 <ref id=”clip_E” synchBehavior=”locked” .../>
 </par>
</par>

To understand how this hypothetical grouping works, look at the outer <par>
group first. You can see that this group contains three elements: clip_A ,
group_X , and group_Y. The syncBehavior attributes on these elements determine
the presentation’s overall synchronization. Because clip_A and group_X are
locked, RealPlayer ensures that these elements stay synchronized. Under
adverse conditions, it first halts playback of group_Y if necessary.

Within group_X, clip_B is locked. Hence, clip_B will continue to play in step
with clip_A unless network conditions greatly deteriorate. Because clip_C can
slip, RealPlayer’s second line of defense is to halt playback for clip_C while
keeping clip_A and clip_B playing. When network conditions improve,
RealPlayer first restores clip_C, then group_Y to the presentation. Note, however
that both clip_D and clip_E are locked in group_Y. This means that RealPlayer
won’t restore group_Y until it can play both clips.
256

CHAPTER 11: Groups
Specifying Synchronization Behavior Default Values

The group attribute syncBehaviorDefault is useful for setting synchronization
behaviors with groups that contain many clips, or with nested groups. In a
group tag, the syncBehaviorDefault attribute determines which synchronization
behavior is used if a group element does not specify a syncBehavior value, or
uses syncBehavior=“default”. In the following example, the group tag has a
locked synchronization behavior set by default:

<par syncBehaviorDefault=“locked”>
 <audio src=”soundtrack.rm” .../>
 <ref src=”training.swf” syncBehavior=“canSlip” .../>
 <textstream src=”translation.rt” syncBehavior=“default” .../>
</par>

In the preceding example, the RealAudio clip does not specify a syncBehavior
attribute, and the RealText clip uses syncBehavior=“default” . Both clips
therefore use the default value (locked) set in the group tag. The Flash clip
specifies a different synchronization behavior, though, which overrides the
default setting.

Setting Groups to Inherit Synchronization Defaults

A group tag’s syncBehaviorDefault attribute can have the values locked, canSlip,
or independent, which are described in the table “syncBehavior Attribute
Values” on page 254. The attribute’s default value is inherit, which you can also
set explicitly in a group tag. This inherit value is useful with nested groups, as
shown in the following abstract example:

<par id=”master_group” syncBehaviorDefault=“canSlip”>
 <par id=”group_X” syncBehaviorDefault=”inherit”>
 ...group_X clips played in parallel...
 </par>
 <par id=”group_Y”>
 ...group_Y clips played in parallel...
 </par>
 <par id=”group_Z” syncBehaviorDefault=”locked”>
 ...group_Z clips played in parallel...
 </par>
</par>

In this example, group_X and group_Y both inherit the master group’s
syncBehaviorDefault value of canSlip. Elements within these two groups will use
the canSlip behavior unless another value is specified in their tags. On the
other hand, group_Z overrides the master group’s behavior and sets a default of
257

RealNetworks Production Guide
locked. Elements within group_Z will use the locked behavior unless they
explicitly specify a different value.

Nested Group Interactions with Synchronization Behaviors

When you have several levels of nested groups that use syncBehavior and
syncBehaviorDefault , it’s important to understand how the groups and their
elements interact. Because elements inherit a syncBehaviorDefault value by
default, the interactions can be difficult to grasp unless you look at all levels
of the nested groups. Consider the following abstract example:

<par id=”master_group” syncBehaviorDefault=“canSlip”>
 <par id=”group_X” syncBehaviorDefault=”inherit”>
 <ref id=”clip_A” .../>
 <ref id=”clip_B” syncBehavior=”locked” .../>
 </par>
 <par id=”group_Y” syncBehavior=”locked”>
 <ref id=”clip_C” .../>
 <ref id=”clip_D” .../>
 </par>
 <par id=”group_Z” syncBehaviorDefault=”locked”>
 <ref id=”clip_E” .../>
 <ref id=”clip_F” syncBehavior=”canSlip” .../>
 </par>
</par>

The master group sets a syncBehaviorDefault value of canSlip. The elements
within this master group have the following syncBehavior values:

• group_X set to canSlip

group_X inherits the default value of canSlip from master_group, and passes
that value to the clips it contains, one of which overrides the value:

• clip_A set to canSlip

• clip_B set to locked

• group_Y set to locked

group_Y sets its own behavior to locked. However, it inherits the default
value of canSlip from master_group, and passes that value to both clips it
contains:

• clip_C set to canSlip

• clip_D set to canSlip

• group_Z set to canSlip
258

CHAPTER 11: Groups
group_Z inherits the default value of canSlip from master_group. However, it
changes the default value for the elements it contains to locked. One of the
clips overrides that value:

• clip_E set to locked

• clip_F set to canSlip

Loosening the Synchronization for Locked Elements

When you add syncBehavior=“locked” to elements within a group, RealPlayer
keeps those elements, whether clips or groups, tightly synchronized. You can
loosen the synchronization by adding syncTolerance=“time_value” to the
containing group. A tolerance value is useful if the elements do not need to be
highly synchronized: the higher the tolerance, the less likely that RealPlayer
will have to halt the entire group to rebuffer data. The following example adds
a three-second tolerance to the locked elements:

<par syncTolerance=“3s”>
 <audio src=”soundtrack.rm” syncBehavior=“locked” .../>
 <ref src=”training.swf” syncBehavior=“canSlip” .../>
 <textstream src=”translation.rt” syncBehavior=“locked” .../>
</par>

In the preceding example, the locked RealAudio and RealText clips can fall at
least three seconds out of synchronization before RealPlayer stops the group
to rebuffer the data streams. Base the amount of time to set for a tolerance on
your judgment of how far the clips can fall out of synchronization without the
group playback becoming too confusing for the viewer.

For More Information: SMIL timing values are described in
“Specifying Time Values” on page 315.

Specifying Synchronization Tolerance Default Values

Similar to syncBehaviorDefault , the group attribute syncToleranceDefault can set
synchronization tolerances for nested groups. In the following example, the
master containing group sets a syncToleranceDefault value of three seconds:
259

RealNetworks Production Guide
<par id=”master_group” syncTolerance=”4s” syncToleranceDefault=“3s”>
 <par id=”group_X” syncBehavior=”locked” syncTolerance=”inherit”>
 ...group_X clips played in parallel...
 </par>
 <par id=”group_Y” syncBehavior=”canSlip”>
 ...group_Y clips played in parallel...
 </par>
 <par id=”group_Z” syncBehavior=”canSlip” syncTolerance=”5s”>
 ...group_Y clips played in parallel...
 </par>
</par>

In the preceding example, group_X includes syncTolerance=“inherit” and group_Y
does not have a syncTolerance value. Both groups therefore inherit the master
group’s tolerance value of three seconds. However, group_Z sets its own
tolerance value of five seconds, which overrides the master group’s default.

Note that the master group has both a syncTolerance and a syncToleranceDefault
value. When you use synchronization tolerance values, it’s important to keep
in mind what these values do:

• The syncTolerance value determines the tolerance value used for elements
within the group. In the preceding example, the syncTolerance value for the
master group affects the tolerance applied to group_X, group_Y, and
group_Z, but not to the elements within those groups.

• The master group’s syncToleranceDefault value sets the tolerance on each
subgroup’s elements, as long as group_X , group_Y , or group_Z inherits the
value and does not override it with its own tolerance value.

Tips for Synchronizing Clips

• Authoring a presentation so that it does not consume too much
bandwidth is the best defense against network uncertainties. Make sure
that you understand timeline and bandwidth issues as described in
“Chapter 2: Presentation Planning” beginning on page 27.

• Within a parallel group, it’s best to use a locked synchronization on the
clip that provides the audio. Viewers are more likely to stay tuned to a
presentation in which visuals stop and start if the audio continues to flow
smoothly.
260

CHAPTER 11: Groups
• If you use a locked synchronization on all clips in a group, it’s a good idea
to set a tolerance of a few seconds. This helps RealPlayer to prevent the
entire presentation from halting if data for just one clip is slow to arrive.

Creating an Exclusive Group
The <excl> and </excl> tags create an exclusive group in which only one
element plays at a time. In a <seq> group, only one element plays at a time, too,
but the playback order always proceeds from the first to the last element. In
contrast, an <excl> group has no predefined playback order. The playback
order depends wholly on the SMIL timing commands defined for each
element in the group.

You use an exclusive group for different purposes than you use a parallel
group or a sequence. With <par> and <seq> tags, you can construct a single
timeline that flows continuously throughout the entire presentation. Using
an exclusive group, though, you can break up a timeline through two features:
interruption and interactivity.

As an example of both interruption and interactivity, imagine a group of
videos in which each video plays only when the viewer clicks an icon for the
video. This is interactivity. Then, as it plays, a selected video pauses
intermittently as advertising clips play, automatically resuming when each ad
clip finishes. This is interruption. An exclusive group may define just one of
these features, or both.

Tip: To understand how exclusive groups work, you’ll need to
know about timing attributes. You may therefore want to read
Chapter 13 and Chapter 14 first.

Defining Interactive Begin Times

Adding interactivity to a presentation is a main function of an exclusive
group. In the following example, an exclusive group of videos plays in parallel
with three images. All the video clips in the exclusive group use interactive
begin values to start playback only when the viewer clicks an image. Hence all
three images appear as soon as the parallel group becomes active, but each
video does not become visible until an image is clicked:
261

RealNetworks Production Guide
<par>

 <excl dur=”indefinite”>
 <video src=”video1.rm” begin=”button1.activateEvent” .../>
 <video src=”video2.rm” begin=”button2.activateEvent” .../>
 <video src=”video3.rm” begin=”button3.activateEvent” .../>
 </excl>
</par>

Note that the exclusive group in the preceding example uses dur=“indefinite”,
which keeps the group active indefinitely. A timing command such as this is
required because an <excl> has an intrinsic duration of 0 seconds when its
elements use interactive timing. You therefore need to use timing commands
in the <excl> tag to control the group’s overall duration. Another option is to
use endsync=”all” to keep the group active only until all of its elements have
played.

For More Information: The begin value used to start a clip with a
mouse click is described in “Defining a Mouse Event” on page
348. For more on endsync=”all” , see “Stopping a Group After
the Last Clip Plays” on page 322.

Using Clip Interruption

The following example demonstrates a simple exclusive group with basic clip
interruption. As with a <seq> group, only one clip from this <excl> group will
play at a time. Unlike a <seq> group, though, the order in which you list the
clips does not matter because the timing attributes completely control
playback. In the following example, clips play in the reverse order from which
they are listed:

<excl>

</excl>

In the preceding example, number3.png plays first. Its begin=“0s” value means
that it plays as soon as the <excl> group becomes active. Its dur=“5s” value
makes it play for five seconds. The number2.png clip starts playing three
seconds after the group becomes active, however. Because only one group
262

CHAPTER 11: Groups
element can play at a time, the begin=“3s” value for number2.png overrides the
dur=“5s” value for number3.png. When number2.png starts to play, it stops
number3.png. Likewise, when number1.png starts, it stops number2.png.

For More Information: For more on the begin attribute, see
“Setting Begin and End Times” on page 316. Durations are
explained in “Setting Durations” on page 319.

Modifying Clip Interruption Behavior

By defining priority classes, you can control how clips in an exclusive group
interrupt each other. In an exclusive group that does not use priority classes,
an interrupting clip stops the interrupted clip. By defining priority classes,
though, you can pause the interrupted clip instead, so that its playback
resumes once the interrupting clip finishes. You define a priority class with
<priorityClass> and </priorityClass> tags. Between these tags, you list the media
clips within that priority class, as shown here:

<excl>
 <priorityClass...>
 ...clips in the higher priority class...
 </priorityClass>
 <priorityClass...>
 ...clips in the lower priority class...
 </priorityClass>
</excl>

When you create priority classes, the order of clips within the <excl> group
becomes important. The first priority class has the highest priority, the last
class has the lowest priority. All clips within a priority class have the same
priority, and are called peers.

Once you define priority classes, you can use the attributes summarized in the
following table to set the interruption behavior for clips in each class. A
<priorityClass> tag can have an id attribute and any of the following attributes,
263

RealNetworks Production Guide
but no others. You cannot include timing attributes in a <priorityClass> tag, for
example.

Controlling How Peers Interact

The peers attribute for a priority class determines how clips within that
priority class interrupt each other. The peers attribute can have one of the
values given in the following table.

For example, to have clips within an exclusive group pause each other instead
of stop each other during interruptions, you can define a single priority class
and use peers=“pause” as shown here:

<priorityClass> Attributes

Attribute Value Default Function Reference

peers defer|never|
pause|stop

stop Controls how clips within the same
class interrupt each other.

page 264

higher pause|stop pause Determines how clips with higher
priority interrupt clips in the class.

page 265

lower defer|never defer Specifies how interrupting clips
with lower priority affect playback.

page 266

pauseDisplay disable|hide|
show

show Sets a clip’s appearance if the clip is
paused.

page 266

peers Attribute Values

Value Function

defer An interrupting clip does not start until the currently playing clip stops.

never An interrupting clip does not start at all.

pause The interrupting clip pauses the playing clip. After the interrupting clip
finishes, the paused clip resumes playback. The pauseDisplay attribute sets
the appearance of the paused clip.

stop The interrupting clip stops the playing clip. This is the default if you leave
the peers attribute out of the <priorityClass> tag, or you do not define any
priority classes within an <excl> group.
264

CHAPTER 11: Groups
<excl>
 <priorityClass peers=“pause”>
 <video src=”video1.rm” .../>
 <video src=”video2.rm” .../>
 <video src=”video3.rm” .../>
 </priorityClass>
</excl>

For More Information: For more on pauseDisplay, see “Specifying
How Paused Clips Display” on page 266.

Setting Interactions with Higher Priority Classes

For priority classes other than the highest priority class, you can use the higher
attribute in the <priorityClass> tag to determine how any clip in a higher
priority class interrupts a clip in the current priority class. The higher attribute
can take one of the values listed in the following table.

In the following example, the first priority class (class1) has higher priority.
The second priority class (class2) uses higher=“stop” to specify that if a clip
from class1 interrupts a clip from class2, the class2 clip will stop. Note, though,
that class2 also uses peers=“pause”. This means that if a clip from class2
interrupts another clip from that class, the interrupted clip will pause, not
stop:

<excl>
 <priorityClass id=”class1”>
 ...clips in the higher priority class...
 </priorityClass>
 <priorityClass id=”class2” higher=”stop” peers=”pause”>
 ...clips in the lower priority class...
 </priorityClass>
</excl>

higher Attribute Values

Value Function

pause An interrupting clip from a higher priority class pauses the playing clip.
After the interrupting clip finishes, the paused clip resumes playback. This
is the default if you do not use the higher attribute. The pauseDisplay
attribute sets the appearance of the paused clip.

stop An interrupting clip from a higher priority class stops the playing clip.
265

RealNetworks Production Guide
For More Information: For more on pauseDisplay, see “Specifying
How Paused Clips Display” on page 266.

Setting Interactions with Lower Priority Classes

For priority classes other than the lowest priority class, you can use the lower
attribute in the <priorityClass> tag to determine how a clip from a lower
priority class acts if it attempts to interrupt a clip in the current priority class.
The lower attribute can take one of the values listed in the following table.

In the following example, the first priority class (class1) has higher priority
and uses lower=“never” to specify that if a clip from class2 attempts to interrupt
a clip from class1, the class2 clip will not play at all. Note, though, that class2
also uses peers=“defer”. This means that if a clip from class2 interrupts another
clip from that class, the interrupting clip will play after the interrupted clip
finishes:

<excl>
 <priorityClass id=”class1” lower=”never”>
 ...clips in the higher priority class...
 </priorityClass>
 <priorityClass id=”class2” peers=”defer”>
 ...clips in the lower priority class...
 </priorityClass>
</excl>

Specifying How Paused Clips Display

When you set peers=“pause” or higher=“pause” in a <priorityClass> tag, you can
also set the pauseDisplay attribute, which determines how a clip appears when

lower Attribute Values

Value Function

defer An interrupting clip from a lower priority class does not start until the end
of the current clip, as well as any higher-priority clips that play after the
current clip. This is the default if you do not use the lower attribute.

never An interrupting clip from a lower priority class does not play at all.
266

CHAPTER 11: Groups
it pauses. This attribute, which has no effect on audio-only clips, can take one
of the values listed in the following table.

In the following example, each clip that interrupts another clip causes that
clip to pause and disappear. After the interrupting clip finishes playing, the
interrupted clip reappears and resumes playback:

<excl>
 <priorityClass peers=“pause” pauseDisplay=”hide”>
 <video src=”video1.rm” .../>
 <video src=”video2.rm” .../>
 <video src=”video3.rm” .../>
 </priorityClass>
</excl>

Tips for Defining Exclusive Groups and Priority Classes

• An <excl> group can have one or several priority classes.

• Priority classes affect only interruption behavior. They have nothing to do
with timing. A clip in a lower priority class can play before a clip in a
higher priority class, or vice versa.

• When you use priority classes, every element in the <excl> group must
belong to a priority class. You cannot mix clips that are within priority
classes and clips that are outside of priority classes.

• Priority classes cannot be nested. That is, one priority class cannot
contain another priority class.

• A priority class can contain clips or groups of clips.

pauseDisplay Attribute Values

Value Function

disable The paused clip appears visible but disabled in RealPlayer. It does not
respond to mouse clicks until it resumes playback.

hide The paused clip disappears until it resumes playback.

show The paused clip remains visible in RealPlayer, and it continues to respond to
mouse clicks. This is the default if you do not use the pauseDisplay
attribute.
267

RealNetworks Production Guide
268

C H A P T E R
12

 Chapter 12: LAYOUT
When you stream more than one clip, you use SMIL to lay out the
presentation. The layout defines where each clip appears in
RealPlayer. Clips might appear side by side, for example, or stacked
on top of each other. You can even play clips in windows that pop up
from the RealPlayer main media playback pane.

Note: For instructions on laying out a presentation in a Web
page instead of in RealPlayer, see Chapter 20.

Understanding Layouts
If your presentation is audio-only, or it displays just one clip, you do not need
to create a layout. However, if you want to play successive clips in the same
area, or if your presentation displays multiple clips together, you need to
define a layout. The following sections provide an overview of the main layout
features.

Root-Layout Area

You define a presentation’s layout in a SMIL file’s header section. You first
create one (and only one) root-layout area, which sets the size of the main media
playback pane when the presentation starts. This size stays constant
throughout the presentation unless the viewer manually resizes the pane, or
you change the root-layout size using a SMIL animation. You cannot play any
clips in the root-layout area, but you can set its color.

For More Information: The section “Defining the Main Media
Playback Pane” on page 278 explains how to set up the root-
layout area.
269

RealNetworks Production Guide
Playback Regions

Each clip plays in a rectangular region. Within the main media playback pane,
all regions lay within the root-layout area. You might define just one region
that’s the same size as the root-layout area, or you might set up multiple
regions. Although similar to HTML frames, SMIL regions can overlap, letting
you play a clip in one region in front of a background image in another region,
for example.

SMIL Region Possibilities

For More Information: See “Defining Playback Regions” on page
281 for information about setting up regions.

Subregions

Within each region you can also create subregions, which fall within their
containing region, just as a region within the main media playback pane falls
within the root-layout area. A subregion automatically moves if its containing
region’s position changes. Using a subregion, for example, you can mimic a
television channel in which a small, partially transparent channel logo appears
in a corner, hovering above the content.
270

CHAPTER 12: Layout
A Subregion Within a Region

For More Information: See “Defining Subregions” on page 294
for more information on subregions.

Secondary Media Playback Windows

Popping up above the main media playback pane, a secondary media window can
be moved, resized, and closed independently. You can use a secondary media
playback window to display RealText credits for a video playing in the main
media playback pane, for example. As with the main media playback pane, you
can divide a secondary media playback window into separate playback regions.
A secondary media playback window can open when the presentation starts,
or when a certain clip starts to play. All clips playing in the main media
playback pane and the secondary media playback windows are part of the
same timeline defined within a single SMIL file.

Subregion
271

RealNetworks Production Guide
Secondary Pop-Up Window

Secondary Pop-up Windows Versus Hyperlinked Pop-up Windows

To open a new window based on viewer input, you create hypertext links to
other SMIL files in your presentation. When the viewer clicks a hypertext link,
RealPlayer launches a new, linked window (rather than a secondary media
playback window) that plays a new SMIL presentation and either stops or
pauses the clips in the main media playback pane. The following table
describes the differences between using a secondary pop-up window and a
hyperlinked pop-up window.

Secondary Pop-up Windows Versus Hyperlinked Pop-up Windows

Secondary Pop-up Window Hyperlinked Pop-up Window

When does the
window pop up?

The window pops up at the
beginning of the presentation or
when the first clip assigned to
the window begins to play.

The window pops up when the
viewer clicks a hyperlink in the
SMIL presentation.

Do clips in the
main media
playback pane
continue to play?

All clips continue to play in the
main media playback pane and
the pop-up window according to
the SMIL timeline.

You can choose whether to
continue, pause, or stop the
presentation in the main
media playback pane.

How many SMIL
files do I write?

You write just one SMIL file that
controls the timeline for the
main media playback pane and
all secondary media playback
windows.

You write separate SMIL files
for the main media playback
pane and each hyperlinked
pop-up window.

 (Table Page 1 of 2)
272

CHAPTER 12: Layout
For More Information: Chapter 15 explains hyperlinking.

Clip Position and Fit

By default, a clip aligns with a region’s upper-left corner and displays at its
normal size. If it’s too big for the region, it’s cropped. If it’s too small, the
region’s background color displays in the remainder of the region. You can
modify this behavior to align a clip to different points within a region (clip
position), as well as resize the clip to make it fit the region (clip fit) better.

Clip Position

To define clip position, you create various registration points that specify where
and how clips align to regions. One registration point might center clips in
their regions, for example. Another point might align clips with their regions’
bottom-left corners. The following figure illustrates two registration points,
showing a few of the many ways to align clips to a point.

What user
controls does the
pop-up window
have?

The pop-up window has buttons
to minimize, maximize and close
the window. All timeline and
menu controls are on the main
media playback pane.

The pop-up window gives the
viewer many playback controls
and menus.

Can the pop-up
window launch
another pop-up
window?

No, a secondary media playback
window cannot launch another
secondary media playback
window. The main media
playback pane can launch any
number of secondary media
playback windows, though.

Yes, a hyperlinked pop-up
window runs a new SMIL
presentation that can launch
new windows.

Secondary Pop-up Windows Versus Hyperlinked Pop-up Windows (continued)

Secondary Pop-up Window Hyperlinked Pop-up Window

 (Table Page 2 of 2)
273

RealNetworks Production Guide
Registration Point Alignment

For More Information: The section “Positioning Clips in
Regions” on page 297 explains how to specify clip positions.

Clip Fit

The clip fit determines what happens when a clip is larger or smaller than its
region. When a clip does not fit a region, you can keep the clip its normal size,
scale the clip larger or smaller, or even add scroll bars to handle large clips.

For More Information: The section “Fitting Clips to Regions” on
page 303 explains how to control clip fit.

Tips for Laying Out Presentations

SMIL provides many options for laying out presentations. In many cases, you
can achieve the same visual layout by different methods, but some methods
may provide more clip placement options, for example, or create a layout
that’s easier to modify. Before you lay out a presentation, make sure you
understand the options available to you. The following sections will help you
make choices based on the type of presentation you want to create.

Tip: It may help to sketch the layout on paper or with
illustration software. In your sketch, position the regions,
subregions, and clips, noting their sizes and the thickness of
any borders that should appear around them.

Registration Point Registration Point
274

CHAPTER 12: Layout
How big should I make the root-layout area?

Unless the viewer manually resizes the main media playback pane, it stays at
the root-layout size for the duration of the presentation. Therefore, you need
to make sure that the root-layout area is large enough to encompass all clips
you plan to play. Calculate the root-layout size based on the sizes of clips that
play together, as well as any borders you want to add.

Root-Layout Example

Suppose you plan to display two clips, one 100 pixels wide and the other 200
pixels wide, side-by-side. If you want a five-pixel border around the clips, for
example, the root-layout area needs to be 315 pixels wide:

• 5 pixels from the left edge of the root-layout area to the first clip.

• 100 pixels for the first clip.

• 5 pixels from the right edge of the first clip to the left edge of the second
clip.

• 200 pixels for the second clip.

• 5 pixels from the right edge of the second clip to the right edge of the
root-layout area.

RealPlayer Menus and Controls

When choosing a root-layout size, keep in mind that the RealPlayer menus
and controls will appear around the main media playback pane. If you define a
very large root-layout area, some parts of the main media playback pane, or
some RealPlayer controls, may not appear on the viewer’s screen. The smallest
computer screen in general use is 640 pixels wide by 480 pixels high.

Double-Screen and Full-Screen Modes

As described in “Controlling How a Presentation Initially Displays” on page
517, you can make the presentation display at double-size or full-screen mode
when it starts up. Doing this may affect how you define the root-layout area.
For example, most computer screens have a width-to-height ratio of 4:3.
Therefore, a root-layout area that also has a 4:3 ratio will scale best in full-
screen mode.

Should my presentation use secondary media playback windows?

A secondary pop-up window is a useful way to provide additional information
in a presentation. You might use the window to provide hypertext links to
other streaming presentations or Web pages, for example. A secondary media
275

RealNetworks Production Guide
playback window also provides a way to work additional clips into your
presentation without making the root-layout area too big.

Add secondary media playback windows with caution, though. Using too
many secondary media playback windows may make the presentation
cluttered and difficult for the viewer to follow. Keep in mind, too, that the
viewer can close secondary media playback windows at any time. Once closed,
these windows do not open again unless another clip is scheduled to play in
them later, or the viewer replays the presentation. For this reason, you may not
want to play crucial clips in secondary media playback windows.

Tip: As with the root-layout area, calculate a secondary media
playback window’s height and width based on the sizes of clips
that play together in the window, as well as any borders you
want to add.

How many regions should I create?

Every visual clip must be assigned to a region, but you don’t necessarily have
to create a separate region for each clip. When you play a sequence of clips, for
example, you can assign each new clip to the same region, using registration
points if necessary to align each clip to the region. When multiple clips play in
parallel, though, RealNetworks recommends that you define a separate region
(either a main region or a subregion) for each clip.

Should I define subregions?

Any layout that uses subregions can be duplicated using just main regions.
But using subregions simplifies certain layout tasks because subregions are
associated with their containing regions. For example, if you move a region 10
pixels to the left in the root-layout area, all of its subregions automatically
move with it. If the subregions were main regions instead, you’d have to
change their layout attributes individually to keep them at the same relative
position within the larger region.

Should I create registration points?

If your regions and subregions are the same sizes as the clips that play in
them, you do not need to create registration points. You may want to create
registration points if regions are larger than clips, however and you don’t want
clips to align with the regions’ upper-left corners.
276

CHAPTER 12: Layout
Can I use subregions instead of registration points to position clips?

Yes. Suppose you want to position a small clip somewhere within a large
region. You could either apply a registration point to the region, or you could
create a subregion inside the region.

When to Use a Registration Point

The primary advantage of defining a registration point is that you can easily
apply the point to multiple regions. To center several clips in several different
regions, it’s much easier to define a single registration point and apply it to
the various regions than to create a subregion for each clip.

When to Use a Subregion

Defining a subregion for a smaller clip gives you more options in determining
how the clip appears within the region. You can set a specific subregion size,
for example, and specify how the clip scales within the subregion. If you want
multiple clips to overlap, you should use subregions because you can set the
clips’ stacking order by using the subregions’ z-index attributes.

Layout Tag Summary

The following SMIL sample illustrates the functions and relationships of the
main layout tags. Layout markup goes in the SMIL header section, between
<layout> and </layout> tags:

<smil xmlns=“http://www.w3.org/2001/SMIL20/Language”>
 <head>
 <layout>
 <root-layout ...defines the main media pane’s overall size.../>
 <region id=”ID1” ...defines a playback region within the main pane.../>
 <region id=”ID2” ...defines a playback region that has a subregion...>
 <region id=”ID3” ...defines a subregion.../>
 </region>
 <topLayout ...defines a secondary media window’s overall size...>
 <region id=”ID4” ...defines a region within the secondary window.../>
 </topLayout>
 <regPoint id=”ID5” ...defines a point where clips are placed in regions.../>
 </layout>
 </head>
 <body>
 ...clips and groups...
 <ref src=”...” region=”ID1” regPoint=”ID5” ...assigns a clip to a region
 and a registration point by IDs.../>
277

RealNetworks Production Guide
 <ref src=”...” region=”ID2” ...assigns a clip to a region by ID.../>
 ..more clips and groups...
 </body>
</smil>

For More Information: For more on the SMIL header and body
sections, see “Header and Body Sections” on page 196.

Creating Main and Secondary Media Windows
The simplest layout defines a size for the RealPlayer main media playback
pane, and creates a single playback region for clips. More complex layouts can
create multiple regions, and even launch secondary, pop-up windows. The
following sections explain how to define and set the sizes for the main media
playback pane, as well as any secondary media playback windows you want to
use.

Defining the Main Media Playback Pane

For every SMIL presentation that uses a layout, you use the <root-layout/> tag
to set the main media playback pane’s width and height in pixels. The <root-

layout/> tag requires height and width attributes. An id=”ID” attribute is
optional, and is generally required only if you use SMIL animations to change
the pane size as the presentation plays. The following example creates a root-
layout area 320 pixels wide by 240 pixels high:

<layout>
 <root-layout width=”320” height=”240”/>
 ...main media playback pane regions defined after the root-layout area...
</layout>

Because clips cannot play in the root-layout area, you need to define at least
one region in addition to the root-layout area. In the following example, the
single region automatically assumes the same size as the root-layout area:

<layout>
 <root-layout width=”320” height=”240”/>
 <region id=”video_region”/>
</layout>

For More Information: “Defining Playback Regions” on page 281
explains how to set region sizes and positions within the main
media playback pane. “Adding Background Colors” on page
292 tells how to set pane colors.
278

CHAPTER 12: Layout
Creating Secondary Media Playback Windows

To add secondary, pop-up windows to a presentation, you include <topLayout>
and </topLayout> tags for each window you want to launch. As with the <root-

layout/> tag, you specify the width and height of each secondary media
playback window in pixels. An id=”ID” attribute is optional, and is generally
required only for use with SMIL animations. The following example creates a
secondary media playback window 180 pixels wide by 120 pixels high, and
defines a single playback region of the same size:

<layout>
 <root-layout.../>
 ...main media playback pane regions defined...
 <topLayout width=”180” height=”120”>
 <region id=”popup_region”/>
 </topLayout>
</layout>

Note: Although functional, secondary media windows are
currently plain windows that do not include the standard
RealPlayer skin.

For More Information: See “Defining Playback Regions” on page
281 for information on setting region sizes and positions.
“Adding Background Colors” on page 292 explains how to
define a window color.

Controlling When Secondary Media Windows Open and Close

A <topLayout> tag can include open and close attributes that determine when
the secondary media playback window appears and disappears. The following
table describes the values these attributes can have. You can define one open
279

RealNetworks Production Guide
value, and one close value, or leave these attributes out of the tag to use the
default values.

With the default values of open=“onStart” and close=“onRequest”, the secondary
media playback window opens when the presentation begins (even if no clips
play in the window immediately), and stays open until the viewer closes the
window or starts another presentation. A common alternative is to make the
window appear only when clips play in it, and close when those clips finish
playing:

<topLayout ... open=”whenActive” close=”whenNotActive”>

Tips for Defining Secondary Media Playback Windows

• A viewer can always close a secondary media playback window manually,
regardless of the close attribute’s value. If a clip is assigned to play in a
secondary media playback window the viewer has closed, RealPlayer still
processes the streaming clip, but it doesn’t display the clip’s visual
content. It will play any audio content, however.

• Content in secondary media playback windows does not appear when
RealPlayer expands to full-screen mode. In this case, only the content
playing in the main media playback pane (the <root-layout/> area) appears.

• You cannot control where a secondary media playback window pops up
on the viewer’s screen. RealPlayer determines a placement based on the
size of the main and the secondary media playback windows, as well as the
arrangement of existing windows on the screen.

Attributes for Opening and Closing Secondary Media Windows

Attribute and Value Function

open=”onStart” Open the window when the presentation begins, regardless
of when clips play in the window. Keep the window open
until the presentation ends or the viewer closes the
window. This is the default.

open=”whenActive” Open the window when a clip begins to play in a region
within the window.

close=”onRequest” Close the window only when the viewer clicks the close
button. This is the default.

close=”whenNotActive” Close the window when clips stop playing in the window,
or when the viewer clicks the close button.
280

CHAPTER 12: Layout
• If the secondary media playback window uses close=“whenNotActive”, a
clip’s fill attribute can affect when the window closes. For more
information, see “Setting a Fill” on page 329.

• The opening or closing of a secondary media playback window can start
or stop another element. For more information, see “Defining a
Secondary Window Event” on page 353.

Controlling Resize Behavior

Viewers can resize the main media playback pane and secondary media
playback windows manually, or by choosing RealPlayer’s double-size or full-
size mode. By default, all regions and clips resize accordingly. You can change
this behavior, though, to allow only regions (and hence the clips within those
regions) defined with percentage values to resize. In this case, clips playing in
regions defined with pixel values will not resize. To do this, add the attribute
rn:resizeBehavior=“percentOnly” to the <root-layout> or <topLayout> tag:

<root-layout width=”250” height=”230” rn:resizeBehavior=”percentOnly”/>

Using this attribute requires that you declare the following namespace in the
<smil> tag:

xmlns:rn=“http://features.real.com/2001/SMIL20/Extensions”

For More Information: “Defining Region Sizes and Positions” on
page 283 explains pixel and percentage values for regions. For
background on customized attributes and namespaces, see
“Using Customized SMIL Attributes” on page 201.

Defining Playback Regions
For the RealPlayer main media playback pane and each secondary media
playback window, you need to define at least one region where clips play. For
the main media playback pane, you define regions after the <root-layout/> tag.
For secondary media playback windows, you define them between each
window’s <topLayout> and </topLayout> tags. You create each region using a
<region/> tag:

<layout>
 <root-layout.../>
 <region id=”ID1” ...defines a playback region within the root-layout area.../>
 <region id=”ID2” ...defines a playback region within the root-layout area.../>
 <topLayout...>
281

RealNetworks Production Guide
 <region id=”ID3” ...defines a region within a secondary media window.../>
 <region id=”ID4” ...defines a region within a secondary media window.../>
 </topLayout>
</layout>

A <region/> tag requires only a unique ID to create a region that expands to
the same size as the main or secondary media playback window. In most cases,
though, you’ll want to create smaller regions and position them within the
window using other <region/> tag attributes, which are described in the
following sections.

Setting Region IDs and Names

Every region must have a unique, user-defined ID in the form id=“ID”. You
assign clips to a region based on the region’s ID. The following SMIL example
defines a region that uses video_region as its ID:

<layout>
 <root-layout width=”250” height=”230”/>
 <region id=”video_region”/>
</layout>

Optionally, a region can include a name in the form regionName=“name”.
Unlike IDs, region names do not have to be unique. In fact, region names are
useful primarily when two or more regions share the same name. In this case,
you can assign the same clip to play in multiple regions by using the region
name rather than the region ID. The following is an example of a video clip
with a region name:

<region id=”video_region1” regionName=”videoregion”/>

Although region names can be identical, no region name should be the same
as a region ID. The following example is allowed because the IDs are unique
even though the region names are identical:

<region id=”video_region1” regionName=”videoregion”/>
<region id=”video_region2” regionName=”videoregion”/>

However, the following example is not allowed because the ID is not unique:

<region id=”video_region1” regionName=”video_region1”/>

For More Information: See “Playing the Same Clip in Multiple
Regions” on page 309 and “Example 3: Media Playback Pane
Resized for Captions” on page 464 for examples of assigning
clips to regions based on the region name rather than the ID.
282

CHAPTER 12: Layout
The section “SMIL Tag ID Values” on page 200 contains rules
for specifying IDs.

Defining Region Sizes and Positions

If you do not specify a region’s size, the region becomes the same size as the
window that contains it. For example, the following region expands to 320
pixels by 240 pixels, the same size as the main media playback pane:

<layout>
 <root-layout width=”320” height=”240”/>
 <region id=”video_region”/>
</layout>

In most cases, though, you’ll want regions to be smaller than the window that
contains them. This lets you place regions side-by-side, or use the window
background color as a border around a region. The following figure illustrates
how a region’s size and position attributes control where the region appears
within its window.

Region Size and Position Attributes

The region size and position attributes constitute a simple coordinate system
measured in pixels or percentages. Because each attribute has a default value
of auto, you can leave it out of the <region/> tag to set its value automatically
based on the values of the other attributes. The result is that, in most cases,

height

width

rightleft

top

bottom

height

width

rightleft

top

bottom
283

RealNetworks Production Guide
you need to specify just one to four of the attributes listed in the following
table.

Note: For size and position attributes, SMIL supports the use
of px to designate pixels, as in top=“60px”. This provides
consistency with the Cascading Style Sheet 2 (CSS2) standard.
In SMIL, though, the px designation is not necessary. For
simplicity, this guide omits the px from pixel measurements.

Layout Example 1: Region Width and Height

This example shows a region in which only the width and height are defined:

<region id=”video_region” width=”180” height=”120”/>

In this case, the region is placed in the window’s upper-left corner. The bottom
and right offsets from the window borders are set automatically based on the
region’s size and position. If the window were 300 pixels wide by 200 pixels
high, you could achieve the same layout using percentage values:

<region id=”video_region” width=”60%” height=”60%”/>

Region Size and Position Attributes

Attribute Function Example

bottom Sets region’s bottom offset from window’s bottom border. bottom=”22”

height Specifies the region’s height. height=“180”

left Sets region’s left offset from window’s left border. left=“20%”

right Sets region’s right offset from window’s right border. right=”5%”

top Sets region’s top offset from window’s top border. top=“60”

width Specifies the region’s width. width=“240”

height

width

height

width
284

CHAPTER 12: Layout
Tip: With percentage values, the region changes size if you
modify the sizing attributes of the <root-layout/> or
<topLayout> tag that contains the region. With pixel
measurements, though, the region size remains stable.

Layout Example 2: Four Region Offsets

This example shows a region placed in a window without specifying the region
size:

<region id=”video_region” left=”60” right=”60” top=”40” bottom=”40”/>

In this case, the four offsets from the window borders determine the region
size. If the window were 300 pixels wide by 200 pixels high, the region would
be 180 pixels wide (300-60-60=180) and 120 pixels high (200-40-40=120). You
could create the same layout with percentage values:

<region id=”video_region” left=”20%” right=”20%” top=”20%” bottom=”20%”/>

Tip: If you define a region size with these offset attributes,
changing the window’s size also changes the region’s size
whether the attributes use pixels or percentages.

rightleft

top

bottom

rightleft

top

bottom
285

RealNetworks Production Guide
Layout Example 3: Region Sizes and Two Offsets

This example shows a common way to define region size and position. It
specifies a region width and height, then sets the region’s offset from the
window’s upper-left corner:

<region id=”video_region” left=”60” top=”40” width=”180” height=”120”/>

If the window were 300 pixels wide by 200 pixels high, the region layout would
be the same as in “Layout Example 2: Four Region Offsets” on page 285. Using
pixel measurements for the region width and height, however, keeps the
region size stable if you modify the window size.

Using Different Offset Values

For this example, you could use the right and bottom attributes instead of left
and top to create the same layout:

<region id=”video_region” right=”60” bottom=”40” width=”180” height=”120”/>

Using Percentage Values

You could also define this layout using percentage values for the left and top
offsets. This keeps the region’s relative position within the window the same
should you change the window size:

<region id=”video_region” left=”20%” top=”20%” width=”180” height=”120”/>

height

width

left

top

height

width

left

top
286

CHAPTER 12: Layout
Layout Example 4: Two Offsets

This example sets the region’s size and position by specifying only the right
and bottom attributes:

<region id=”video_region” right=”60” bottom=”40”/>

Because neither the left nor the top attribute is defined, the region is placed in
the window’s upper-left corner. The region’s width and height expand to meet
the right and bottom offset values.

Using Different Offset Values

Alternatively, you could set the region’s left and top attributes instead of right
and bottom to place the region at the window’s lower-right corner:

<region id=”video_region” left=”60” top=”40”/>

Layout Example 5: Single Offsets for Two Regions

Typically, you’ll need to define more that one region within a window to lay
out clips that play together. To do this, you define each region with a separate
<region/> tag, using any combination of size and position attributes to place
each region in its window.

right

bottom

right

bottom
287

RealNetworks Production Guide
This example shows two regions laid out so that a small stripe of the root-
layout background appears between the regions. Because vertical size or offset
values (top, height , or bottom) are not specified, each region is as tall as the
root-layout area:

<region id=”region_1” right=”55%”/>
<region id=”region_2” left=”55%”/>

Layout Example 6: Overlapping Regions

This example has one region in front of another. There are many ways to
define this layout with the size and position attributes. The following sample
uses percentage values for the four border offsets:

<region id=”region_1” top=”5%“ left=”5%“ bottom=”5%“ right=”5%”/>
<region id=”region_2” top=”25%“ left=”25%“ bottom=”25%“ right=”25%”/>

Note: Whenever regions overlap, you should also define how
the regions stack with the z-index attribute. See “Stacking
Regions That Overlap” on page 290 for more information.

right

left

right

left
288

CHAPTER 12: Layout
Tips for Defining Region Sizes and Offsets

• All regions appear within the <root-layout/> or <topLayout> area that
contains them. Any part of a region defined to appear outside of its
containing window is cut off. For this reason, no percentage value can
effectively be more than 100%.

• You can mix pixel and percentage values. You could define the top and left
attributes in percentages, for example, while specifying width and height in
pixels.

• If you mix pixel and percentage values when defining regions, and you
also use rn:resizeBehavior=“percentOnly” as described in “Controlling Resize
Behavior” on page 281, manually resize the RealPlayer window. If regions
do not resize as expected, you may need to change some pixel values to
percentages, or vice versa.

• You can use both whole and decimal values for percentages. For example,
the values “4%” and “4.5%” are both valid.

• An audio clip does not require a region for playback. However, you can use
a <region/> tag’s soundLevel attribute to control the relative volume of an
audio clip. See “Controlling Audio Volume in a Region” on page 294 for
more information, and “Turning Down an Audio Clip’s Volume” on page
307 for an example.

Assigning Clips to Regions

After you define the playback regions, you use region attributes within clip
source tags to assign clips to regions based on the region’s ID. In the following
example, the video and text clips are assigned to the video and text regions
defined in the header:

<smil xmlns=“http://www.w3.org/2001/SMIL20/Language”>
 <head>
 <layout>
 <root-layout backgroundColor=”maroon” width=”250” height=”230”/>
 <region id=”video_region” top=”5” left=”5” width=”240” height=”180”/>
 <region id=”text_region” top=”200” left=”5” width=”240” height=”20”/>
 </layout>
 </head>
 <body>
 <par>
 <video src=”video.rm” region=”video_region” .../>
 <audio src=”audio.rm”/>
289

RealNetworks Production Guide
 <textstream src=”text.rt” region=”text_region” .../>
 </par>
 </body>
</smil>

You can reuse regions by assigning sequential clips to them. For example, you
can play a video clip in a region, then display another clip in that region after
the first clip finishes. You don’t need to assign audio-only clips to regions at
all because audio does not display on the screen.

Stacking Regions That Overlap

When you define multiple regions that overlap, you can use a z-index attribute
in <region/> tags to specify how regions stack. The following layout example
creates a video region that overlaps an image region:

<layout>
 <root-layout width=”280” height=”220”/>
 <region id=”image” top=”10” left=”10” width=”260” height=”200” z-index=”0”/>
 <region id=”video” top=”20” left=”20” width=”240” height=”180” z-index=”1”/>
</layout>

In this example, the root-layout area is 220 pixels high by 280 pixels wide. The
smaller image region is centered on the root-layout area. Its z-index value of 0
makes it display behind all other regions, but not behind the root-layout area.
The video region centered on the image region appears in front of that region
because of its higher z-index value. You could have another region overlap the
video region by setting its z-index value to 2, 5, or 29, for instance. The
following figure illustrates these regions.
290

CHAPTER 12: Layout
Regions Overlapping Through z-index

Tips for Defining z-index Values

• The root-layout area always appears behind all regions. The <root-layout/>
tag cannot have a z-index attribute.

• The z-index values can include negative integers (such as -4), 0 (zero), and
positive integers (such as 5). A region with a z-index value of -4, for
example, displays behind a region with a value of 0, which displays behind
a region with a value of 5.

• The default value of 0 (zero) applies if you don’t specify z-index.

• Using strictly sequential values such as 0, 1, 2, 3, 4 helps you keep track of
the layers, but is not necessary. A sequence such as 0, 10, 20, 30, 40 works
just as well, and leaving gaps in the sequence makes it easier to insert
layers later.

• Nonoverlapping clips can have the same values. Side-by-side videos can
both use z-index=“3”, for example.

• When overlapping clips have the same z-index value, the clip that starts
later in the presentation displays in front. If both clips start at the same
time, the clip with the source tag that appears later in the SMIL file
displays in front.

10

20

10

280

260

240

20

20
0

18
0

22
010

20

10

280

260

240

20

20
0

18
0

22
0

291

RealNetworks Production Guide
Adding Background Colors

By default, <root-layout/> and <topLayout> areas have a black background. All
regions and subregions are transparent. In a <root-layout/>, <topLayout>, or
<region/> tag, you can specify a different background color with the
backgroundColor attribute, as shown in the following example:

<layout>
 <root-layout backgroundColor=”maroon”.../>
 <region id=”region1” backgroundColor=”rgb(100,65,230)”.../>
 <region id=”region2” backgroundColor=”#C2EBD7”.../>
 <region id=”region3” backgroundColor=”inherit”.../>
</layout>

For the color value, you can use inherit to make the region use the same color
as the window or region that contains it. In the example above, the third
region inherits maroon as its background color. To set a color value explicitly,
use a predefined color name, a hexadecimal color value, or an RGB value.

For More Information: Appendix C explains the types of color
values you can use with SMIL.

Tip: Using SMIL animation, you can change a region’s
background color as the presentation plays. See Chapter 17 for
more information.

Setting When Background Colors Appear

By default, all background colors in all regions display when the presentation
starts. In some cases, though, you may not want a region’s background color
to appear until a clip plays in the region. To do this, add
showBackground=“whenActive” to the <region/> tag:

<region id=”region1” backgroundColor=”silver” showBackground=“whenActive”.../>

Making a Region Partially Transparent

A SMIL region is fully transparent if you do not define its background color,
or you explicitly set backgroundColor=“transparent” in the <region/> tag. You can
also make a region’s background color partially transparent with the
customized attribute rn:opacity=“n%”:

<region id=”region1” backgroundColor=”blue” rn:opacity=”50%”.../>

This attribute uses a percentage value from 0% (fully transparent) to 100%
(fully opaque). In the example above, the value of 50% makes the region
292

CHAPTER 12: Layout
background a partially transparent blue. Using this attribute requires that you
declare the following namespace in the <smil> tag:

xmlns:rn=“http://features.real.com/2001/SMIL20/Extensions”

For More Information: You can modify transparency in clips,
too. See “Modifying Clip Colors” on page 220 for details. For
background on customized attributes and namespaces, see
“Using Customized SMIL Attributes” on page 201.

Transparency in Regions and Clips

If a clip that contains transparency (such as a GIF image) plays in a
transparent or partially transparent region, viewers will be able see through
the clip’s transparent areas to underlying regions and clips. The following clip
types can include transparent areas:

• RealVideo

• RealPix

• RealText

• Flash

• GIF and PNG images

RealPlayer can play other types of clips, too, and some of those clips may
include transparency. Support for transparency for each clip type has to be
built into RealPlayer, however. Some clips that display transparency when
rendered in a Web browser, for example, may not display transparency when
played in RealPlayer.

Tip: To check if RealPlayer recognizes a clip’s transparency,
open the clip in RealPlayer and see if the window background
shows through the clip’s transparent areas. You can also turn a
clip’s background color transparent with rn:backgroundOpacity,
as well as use rn:mediaOpacity to add transparency to all colors
in the clip. For more on these attributes, see “Adjusting Clip
Transparency and Opacity” on page 220.

Changing the Region Color Through a Clip Source Tag

By adding backgroundColor to a clip source tag, you can change the color of the
clip’s playback region. Suppose that a region uses black as a background color,
and you want to play one clip in that region using a silver background instead.
293

RealNetworks Production Guide
Rather than define a new region, you can specify the color in the clip source
tag to modify the region color for as long as the clip is active:

<video src=”...” region=”video_region” backgroundColor="silver" .../>

Controlling Audio Volume in a Region

When a region plays a clip that includes an audio track or sound effects, you
can change the clip’s relative audio volume with the soundLevel attribute:

<region soundLevel=“125%”.../>

The sound level always uses a percentage value. The default value of 100%
plays the audio at its recorded volume. A value of 50%, for example, plays the
audio at half its normal volume, whereas a value of 200% plays the audio at
twice its normal volume.

Note that the soundLevel attribute controls only the relative volume of the
audio stream sent to the speakers. It does not change the general sound level
setting on the viewer’s computer, which remains entirely under the viewer’s
control. All sound level adjustments are subject to limitations in the computer
hardware.

For More Information: See “Turning Down an Audio Clip’s
Volume” on page 307 for an example of how to use this
attribute to change the volume of an audio clip.

Tip: Using a SMIL animation, you can dynamically adjust a
region’s soundLevel attribute to fade a clip’s volume in or out.
See Chapter 17 for more information.

Defining Subregions

A subregion functions exactly like a main region, except that it maintains its
position within its containing region if you reposition the containing region.
To create a subregion, you need to modify the containing region to use
<region> and </region> tags instead of a single <region/> tag. You then create
the subregion between the containing region’s <region> and </region> tags, as
shown in the following example, in which the subregion displays near the
containing region’s lower-right corner:
294

CHAPTER 12: Layout
<head>
 <layout>
 <root-layout width=”350” height=”270”/>
 <region id=”video_region” top=”15” left=”15” width=”320” height=”240”>
 <region id=”logo” bottom=”5%” right=”5%” width=”20” height=”20”/>
 </region>
 </layout>
</head>

You lay out a subregion within its containing region using the attributes
described in “Defining Region Sizes and Positions” on page 283. When you set
these attributes, keep in mind that the offset measurements of left, right, top,
and bottom are measured from the containing region’s boundaries. The
subregion always falls completely within the containing region.

For More Information: See “Binary and Unary Tags” on page 199
for background information on converting a single <region/>
tag to its binary equivalent.

Tips for Defining Subregions

• A region can hold any number of subregions.

• Subregions can be nested. A subregion can have a subregion of its own, for
example.

• All subregions must have unique IDs. A subregion cannot have the same
ID as another region or subregion.

• A subregion can take any <region/> tag attribute, and it does not
automatically inherit any attributes from the containing region. For
example, if you use fit=”fill” in the containing region, and do not specify
fit in the subregion, the subregion uses the default fit=”hidden” rather
than fit=”fill”.

• A subregion can have a background color the same as or different from its
containing region. To keep the subregion the same color as the containing
region, use backgroundColor=“inherit”. See “Adding Background Colors” on
page 292 for more on colors.

• Because subregions always appear in front of their containing region, it is
not necessary to set subregion z-index values unless multiple subregions
within the containing region overlap. In this case, the subregion z-index
values apply only to the subregions within the containing region. For
295

RealNetworks Production Guide
example, suppose you define two overlapping regions, and one of these
regions has two overlapping subregions:

<region id=”regionA” z-index=”1”.../>
<region id=”regionB” z-index=”2”...>
 <region id=”subregionC” z-index=”1”.../>
 <region id=”subregionD” z-index=”2”.../>
</region>

In this example, the subregion z-index values of 1 and 2 have no
relationship to the region z-index values of 1 and 2. As a result, region B
appears in front of region A because it has a higher z-index value. Within
region B, subregion D appears in front of subregion C.

• Creating a subregion in the layout section is useful if several clips will play
in the subregion. But you can also create subregions “on the fly” within
the clip source tag. See “Defining Single-Use Subregions” on page 296 for
more information.

Defining Single-Use Subregions

Defining subregions in the SMIL header section is useful if you plan to reuse
the subregion for multiple clips. If you want to create a subregion for just one
clip, though, you can define the region in the clip source tag:

<layout>
 <root-layout backgroundColor=”maroon” width=”250” height=”230”/>
 <region id=”video_region” top=”5” left=”5” width=”240” height=”180”/>
</layout>
...
 <video src=”video.rm” region=”video_region” height=”120” width=”180”
 left=”5” top=”10”/>
...

In the preceding example, the video clip is assigned to an existing region, but
the inclusion of height, width, left, and top values defines a single-use
subregion within that region. Unlike a subregion defined in the <layout>
section, this single-use subregion does not require an ID value. The following
296

CHAPTER 12: Layout
table lists all the region attributes that you can include in a clip source tag to
set a single-use subregion’s properties.

Positioning Clips in Regions
When you do not want a clip to align with a region’s upper-left corner, you can
create a registration point. For example, you might define a registration point
that is 10 pixels in, and 5 pixels down, from the region’s upper-right corner. A
registration point also includes an alignment that determines which part of
the clip is placed on the point. The alignment might place the midpoint of the
clip’s right border on the registration point, for instance.

Within a SMIL file you can define any number of registration points using
either or both of the following methods:

• Method 1: Define each registration point within each clip source tag.

Although simpler, this method limits you to placing each clip near the
center of a region, or along the region border. Plus, you must define each
registration point separately in each clip tag. The section “Defining
Registration Points in Clip Source Tags” on page 298 explains this
method.

Single-Use Subregion Attributes

Attribute Function Reference

backgroundColor Selects the subregion’s background color. page 292

bottom Sets the subregion’s bottom offset. page 283

fit Specifies how the clip fits its allotted space page 303

height Specifies the subregion’s height. page 283

left Sets the subregion’s left offset. page 283

regAlign Aligns the clip to the registration point. page 298

regPoint Defines the registration point for the subregion. page 297

right Sets the subregion’s right offset. page 283

top Sets the subregion’s top offset. page 283

width Specifies the subregion’s width. page 283

z-index Sets stacking order relative to other subregions. page 290
297

RealNetworks Production Guide
• Method 2: Define registration points with <regPoint/> tags in the layout
section, then assign the points to clips.

Although slightly more complex, this method is more powerful. It lets you
place a clip anywhere within a region, and you can reuse each registration
point in any number of clips. The section “Creating a Reusable
Registration Point” on page 300 explains how to use this method.

Using Alignment Values

No matter which method you use to define registration points, you choose
one of nine values to align a clip to a region: topLeft, topMid, topRight, midLeft,
center, midRight, bottomLeft, bottomMid, or bottomRight. The following figure
illustrates where these values fall on a clip:

Alignment Values on Clips

Defining Registration Points in Clip Source Tags

To define a registration point within a clip source tag, you add regPoint and
regAlign attributes to the tag. Both regPoint and regAlign use an alignment
value as described in the preceding section, but the values have different
meanings for the two attributes:

• The alignment value used with the regPoint attribute determines where
the registration point falls in the region (hence, the alignment value
applies to the region, not to the clip).

• The alignment value used with the regAlign attribute specifies which part
of the clip aligns to the registration point.

midRightmidLeft

topRighttopLeft

bottomRightbottomLeft

topMid

bottomMid
298

CHAPTER 12: Layout
For example, the following values center the clip in its region, regardless of the
region’s size and shape:

<ref src=”...” region=”video_region” regPoint=”center” regAlign=”center”/>

The next values select the region’s lower-right corner, and place the clip’s right
midpoint at that corner. In this case, the clip’s bottom half is cut off:

<ref src=”...” region=”video_region” regPoint=”bottomRight”
regAlign=”midRight”/>

Avoiding Problems When Defining Registration Points

Because you can use any of the nine predefined values for both regPoint and
regAlign, there are 81 possible ways to place clips in regions using this method.
Not all possibilities are useful, though. Consider this alignment:

<ref src=”...” region=”video_region” regPoint=”topLeft” regAlign=”bottomRight”/>

In the preceding example, regPoint=”topLeft” puts the registration point at the
region’s upper-left corner. The regAlign=”bottomRight” attribute places the
clip’s lower-right corner on the registration point. This locates the clip outside
the region. Because a clip cannot display outside its region, the clip does not
display at all.

Using Common Registration Point Values in Clip Source Tags

The following table lists some of the more useful combinations of regPoint
and regAlign that you can include in a clip source tag.

Common Registration Point Values in Clip Source Tags

Clip Placement Registration Point Values Example

top left (default) regPoint=“topLeft” regAlign=“topLeft”

top center regPoint=“topMid” regAlign=“topMid”

top right regPoint=“topRight” regAlign=“topRight”

middle left regPoint=“midLeft” regAlign=“midLeft”

center regPoint=”center” regAlign=”center”

middle right regPoint=”midRight” regAlign=”midRight”

bottom left regPoint=“bottomLeft” regAlign=“bottomLeft”

 (Table Page 1 of 2)
299

RealNetworks Production Guide
Creating a Reusable Registration Point

Using the second method for creating registration points, you define each
registration point in the layout section with a <regPoint/> tag. As shown in the
following example, a <regPoint/> tag has a unique ID, a few positioning
attributes, and a regAlign attribute:

<layout>
 ...windows and regions defined here...
 <regPoint id=”above_center” left=”50%” top=”25%” regAlign=”topMid”/>
</layout>

The preceding <regPoint/> tag creates a registration point halfway in from the
left, and a quarter of the way down from the top, of any region. The regAlign
value, described in “Using Alignment Values” on page 298, places the
midpoint of the clip’s top border on the registration point.

Positioning the Registration Point

A <regPoint/> tag’s left, right, top, and bottom attributes, which can have pixel
or percentage values just like region offset values, allow you to place the
registration point anywhere in a region. You need to use only one or two of

bottom center regPoint=”bottomMid” regAlign=”bottomMid”

bottom right regPoint=”bottomRight” regAlign=”bottomRight”

upper-left quadrant regPoint=”center” regAlign=“bottomRight”

upper-right quadrant regPoint=”center” regAlign=“bottomLeft”

lower-left quadrant regPoint=”center” regAlign=“topRight”

lower-right quadrant regPoint=”center” regAlign=“topLeft”

Common Registration Point Values in Clip Source Tags (continued)

Clip Placement Registration Point Values Example

 (Table Page 2 of 2)
300

CHAPTER 12: Layout
these attributes (such as left and top, or right and bottom) to define a
registration point’s position. The following table summarizes these attributes.

Assigning a Registration Point to Clips

Once you define a registration point in the layout section, you assign the
point to any number of clips by adding a regPoint attribute to each clip source
tag. This attribute takes as its value the ID of the <regPoint/> tag. For example,
if you defined this registration point:

<regPoint id=”above_center” left=”50%” top=”25%” regAlign=”topMid”/>

you use the following regPoint attribute in the clip source tag:

<ref src=”...” region=”video_region” regPoint=”above_center” .../>

In the clip source tag, you can even override the regAlign value defined for the
registration point. Suppose that for one clip you want to use regAlign=“center”
instead of the defined regAlign=”topMid”. You can simply add the new regAlign
value to the clip tag, rather than define a new registration point:

<ref src=”...” region=”region2” regPoint=”above_center” regAlign=”center” .../>

Note: You cannot override a registration point’s position
attributes, such as left and top, through a clip source tag.

Using Common Values in <regPoint/> Tags

Using <regPoint/> tags, you can replicate any registration point definable
through clip source tags. The following table shows how to create common
registration point alignments with values in a <regPoint/> tag rather than with

<regPoint/> Tag Position Attributes

Attribute Function Example

left Sets the point’s offset from region’s left border left=“120”

right Sets the point’s offset from region’s right border right=”5%”

top Specifies the point’s offset from region’s top border top=“60”

bottom Specifies the point’s offset from region’s bottom border bottom=”22%”
301

RealNetworks Production Guide
attributes in clip source tags. Note that although left and top attributes are
used, you could define the same registration points using right and bottom.

Tips for Defining <regPoint/> Tags

• Do not use an alignment value, such as topLeft , as an ID in a <regPoint/>
tag. Any variation, such as id=”alignTopLeft” is OK, however. For
information about IDs, see “SMIL Tag ID Values” on page 200.

• To keep the organization clear in the layout section, define all registration
points after the <region/> tags.

• Keep in mind that <regPoint/> tags are not associated directly with
<region/> tags. They affect regions only through the clips that play in

Common Registration Point Values in <regPoint/> Tags

Clip Placement Registration Point Values Example

top left (default) left=“0%” top=“0%” regAlign=“topLeft”

top center left=“50%” top=“0%” regAlign=“topMid”

top right left=“100%” top=“0%” regAlign=“topRight”

middle left left=“0%” top=“50%” regAlign=“midLeft”

center left=”50%” top=”50%” regAlign=”center”

middle right left=”100%” top=”50%” regAlign=”midRight”

bottom left left=“0%” top=“100%” regAlign=“bottomLeft”

bottom center left=”50%” top=”100%” regAlign=”bottomMid”

bottom right left=”100%” top=”100%” regAlign=”bottomRight”

upper-left quadrant left=”50%” top=”50%” regAlign=“bottomRight”

upper-right quadrant left=”50%” top=”50%” regAlign=“bottomLeft”

lower-left quadrant left=”50%” top=”50%” regAlign=“topRight”

lower-right quadrant left=”50%” top=”50%” regAlign=“topLeft”
302

CHAPTER 12: Layout
those regions. In other words, you assign registration points to clips, and
clips to regions.

• If you do not specify any position attributes, the registration point is
placed in the region’s upper-left corner.

• You can mix pixel and percentage values in position attributes, using
left=”10” and top=”15%” , for example.

• Because a single registration point can apply to any region of any size, it is
easier to define position attributes with percentages than with pixels.

• Because you can reuse a registration point defined in a <regPoint/> tag for
any number of clips, it’s better to use this method when you want to align
many clips the same way. Once you define the <regPoint/> tag, you just
add the single regPoint=”ID” attribute to each clip tag, rather than both
regPoint=”value” and regAlign=”value”.

• Take care not to cut off or hide clips. For example, consider these
registration point attributes:

left=“0%” top=“100%” regAlign=“topRight”

These left and top attributes place the registration point at the region’s
lower-left corner. The regAlign attribute places the clip’s upper-right
corner on the point. This locates the clip outside the region. Because a clip
cannot display outside its region, the clip does not display at all.

• Different sizes of regions and clips, the use of registration points, and the
setting of a region’s fit attribute can create many different outcomes for
the placement and scaling of a visual clip. For more information, get the
zipped HTML version of this guide as described in “How to Download
This Guide to Your Computer” on page 11, and view the supplemental
align.htm file.

Fitting Clips to Regions
Whereas a registration point determines where a clip displays in a region, a fit
attribute specifies what happens when a clip is larger or smaller than its
allotted area. The various fit values determine whether resizing, distortion,
and cropping may occur. The fit attribute is part of a <region/> tag, not a
<regPoint/> tag, and it applies to a clip playing in the region whether or not the
clip uses a registration point. The following example shows a fit attribute set
in a <region/> tag:
303

RealNetworks Production Guide
<region id=”video_region” width=”128” height=”64” fit=”meet”/>

fit Attribute Values

The fit attribute uses one of the values described in the following table. The
table’s last three columns indicate if the fit attribute value may scale, distort,
or crop the clip if it does not fit the region dimensions exactly.

The following illustration shows the effects that particular fit attribute values
have on a source clip played in regions with different sizes and aspect ratios.
Note that in some cases, based on the width-to-height ratio of the clip and the
width-to-height ratio of the region, certain fit values have nearly the same

f it Value Function Sc
al

in
g?

D
is

to
rt

io
n?

C
ro

pp
in

g?

fill Place the clip in the region’s upper-left corner, or at the
registration point. Scale the clip so that it fills the region
exactly. Image distortion occurs if the encoded clip and
playback region have different aspect ratios.

yes yes no

hidden
(default)

Keep the clip at its encoded size, and place it in the
region’s upper-left corner, or at the registration point. If
the clip is smaller than the region, fill the remaining space
with the region’s background color. If the clip is larger
than the region, crop out the area that does not fit.

no no yes

meet Place the clip at the region’s upper-left corner or at the
registration point. Scale the clip and preserve its width-to-
height ratio until one dimension is equal to the region’s
size and the other dimension is within the region’s
boundaries. Fill empty space with the region’s
background color.

yes no no

scroll Place the clip at the region’s upper-left corner or at the
registration point. Display the clip as its normal size,
adding horizontal or vertical scroll bars if the clip extends
beyond the region’s boundaries. (RealPlayers earlier than
RealPlayer 8 display clips as hidden instead.)

no no no

slice Place the clip at the region’s upper-left corner or at the
registration point. Scale the clip and preserve its width-to-
height ratio until one dimension is equal to the region’s
size and the other dimension overf lows the region’s
boundaries. Crop the overflow.

yes no yes
304

CHAPTER 12: Layout
effect. But display the same clip in a region with a different width-to-height
ratio, and the fit values can have very different effects.

A Clip Played in Different Regions with Different fit Attribute Values

Overriding a Region’s fit Attribute

You can override a region’s fit attribute within a clip source tag. Suppose that
a certain region uses fit=”fill”, but you want to play one clip in that region and
use fit=“hidden” instead. You can simply add that fit value to the clip source tag
to override the region’s fit value:

<video src=”...” region=”textregion” fit=”hidden” .../>

Tips for Defining the fit Attribute

• Use fit=“meet” if all parts of the clip must display, if the clip’s aspect ratio
must be maintained, and if it’s OK to scale the clip.

• Use fit=“hidden” or fit=“scroll” to keep the clip at its encoded size.

• Use fit=“fill” if you want to fill the entire region with the clip and it
doesn’t matter if RealPlayer enlarges, shrinks, or distorts the clip.

fit = "fill" fit = "hidden"
305

RealNetworks Production Guide
• When scaling clips inside a region, keep in mind that different types of
media scale with different results. A video scaled to a different width-to-
height ratio may not look good. Vector-based media such as Flash
animation, on the other hand, scale more easily to fit different region
sizes. Also, note that scaling a clip consumes CPU power on the RealPlayer
computer.

• For recommendations on using the fit attribute with a RealText clip, see
“RealText Window Size and SMIL Region Size” on page 113.

• When you use the fill, meet , or slice value, a hot spot hyperlink (image
map) defined with percentage values automatically resizes with the clip.
For more information, see “Tips for Defining Hot Spots” on page 367.

• Different sizes of regions and clips, the use of registration points, and the
setting of a region’s fit attribute can create many different outcomes for
the placement and scaling of a visual clip. For more information, get the
zipped HTML version of this guide as described in “How to Download
This Guide to Your Computer” on page 11, and view the supplemental
align.htm file.

Layout Examples
The following sections illustrate how to use layout tags and attributes to
create various types of presentations. To see more examples, get the zipped
HTML version of this guide as described in “How to Download This Guide to
Your Computer” on page 11, and view the Sample Files page.

Centering a Video on a Background Image

This example centers a video clip in front of an image. Because region sizes are
not specified, the regions expand to the root-layout size. The registration point
centers the video clip within its region. The z-index attributes place the video
region in front of the image region. The image region’s fit=“fill” attribute
expands the image to fill the entire region, distorting the image if the image
does not have the same aspect ratio as the region:

<smil xmlns=“http://www.w3.org/2001/SMIL20/Language”>
 <head>
 <layout>
 <root-layout width="320" height="240"/>
 <region id="image_region" fit="fill" z-index="1"/>
 <region id="video_region" fit="hidden" z-index="2"/>
306

CHAPTER 12: Layout
 <regPoint id="middle" regAlign="center" left="50%" top="50%"/>
 </layout>
 </head>
 <body>
 <par>

 <video src="video1.rm" region="video_region" regPoint="middle"/>
 </par>
 </body>
</smil>

Note: SMIL provides no way to tile an image throughout a
region.

Displaying a Letterbox Clip

A wide screen movie displays on most television sets in a letterbox format, in
which blank areas display above and below the movie. As shown in the
following example, you can achieve the same effect for a clip that has a width-
to-height ratio greater than its region’s. Here, the video uses a registration
point that centers it in a region that uses fit=“meet” to scale the video up or
down in size until its left and right edges meet the region boundaries:

<smil xmlns=“http://www.w3.org/2001/SMIL20/Language”>
 <head>
 <layout>
 <root-layout width=“400” height=“300”/>
 <region id=”video_region” fit=”meet”/>
 </layout>
 </head>
 <body>
 <video src=”widescreen.rm” region=”video_region” regPoint=”center”
 regAlign=”center”/>
 </body>
</smil>

Turning Down an Audio Clip’s Volume

Although audio-only clips are not typically assigned to regions, you can take
advantage of a region’s soundLevel attribute to change an audio clip’s volume.
The following example cuts the volume of a background music clip. The single
playback region (1 pixel by 1 pixel) uses the soundLevel attribute to turn down
307

RealNetworks Production Guide
the clip volume. Because the second clip is assigned to this region, RealPlayer
cuts that clip’s audio level as it blends it with the first clip:

<smil xmlns=“http://www.w3.org/2001/SMIL20/Language”>
 <head>
 <layout>
 <root-layout height=”1” width=”1”/>
 <region id=”lowvolume” soundLevel=”35%”/>
 </layout>
 </head>
 <body>
 <par>
 <audio src=”voiceover.rm”/>
 <audio src=”background_music.rm” region=”lowvolume”/>
 </par>
 </body>
</smil>

Playing Three Clips Side-by-Side

The following example displays three regions: a news region, a video region,
and a stock ticker region. The news and video regions are arranged side-by-side
at the top of the RealPlayer main media playback pane. The stock ticker region
appears below them:

<smil xmlns=“http://www.w3.org/2001/SMIL20/Language”>
 <head>
 <layout>
 <root-layout height="230" width="510" backgroundColor="black"/>
 <region id="news_region" width="240" height="180" left="5" top="5"/>
 <region id="video_region" width="240" height="180" right="5" top="5"/>
 <region id="ticker_region" width="500" height="30" left="5" bottom="5"/>
 </layout>
 </head>
 <body>
 <par endsync="news">
 <textstream src="news.rt" id="news" region="news_region" fill="freeze"/>
 <video src="video1.rm" region="video_region" fill="freeze"/>
 <textstream src="ticker.rt" region="ticker_region" fill="freeze"/>
 </par>
 </body>
</smil>
308

CHAPTER 12: Layout
Placing a Clip in a Secondary Media Playback Window

A small change to the preceding example’s layout can make one of the three
clips display in a secondary, pop-up window. The following example places the
stock ticker clip in a secondary media playback window that automatically
opens when the presentation starts. The region that holds the stock ticker clip
has no size and position information, so it automatically assumes the size of
the secondary media playback window. The root-layout area’s height has
decreased, but within the SMIL body nothing has changed:

<smil xmlns=“http://www.w3.org/2001/SMIL20/Language”>
 <head>
 <layout>
 <root-layout height="190" width="510" backgroundColor="black"/>
 <region id="news_region" width="240" height="180" left="5" top="5"/>
 <region id="video_region" width="240" height="180" right="5" top="5"/>
 <topLayout width="500" height="30">
 <region id="ticker_region"/>
 </topLayout>
 </layout>
 </head>
 <body>
 <par endsync="news">
 <textstream src="news.rt" id="news" region="news_region" fill="freeze"/>
 <video src="video1.rm" region="video_region" fill="freeze"/>
 <textstream src="ticker.rt" region="ticker_region" fill="freeze"/>
 </par>
 </body>
</smil>

Playing the Same Clip in Multiple Regions

You normally assign a clip to a single region based on the region ID. Because
each region ID must be unique, however you cannot assign the same clip to
multiple regions by using region IDs. However, you can assign the same clip to
two or more regions based on the region names. In the following example, the
same video plays in two regions that appear size by side:

<smil xmlns=“http://www.w3.org/2001/SMIL20/Language”>
 <head>
 <layout>
 <layout>
 <root-layout width="360" height="120"/>
 <region id="video_region1" regionName="video" soundLevel="0%"
309

RealNetworks Production Guide
 right="50%" fit="fill"/>
 <region id="video_region2" regionName="video" left="50%" fit="fill"/>
 </layout>
 </head>
 <body>
 <seq>
 <video src="video1.rm" region="video"/>
 </seq>
 </body>
</smil>

In the preceding example, the two regions share the same region name. When
it reads the <video/> source clip tag, RealPlayer first looks for a region with
id=“video”. Because there is no such region, RealPlayer looks for a region with
regionName=“video”. In this example, it finds two regions with this name, so it
plays the same clip in both regions.

With this strategy, RealPlayer requests only one video clip from Helix Server. If
you used two <video/> source clips instead, RealPlayer would request the same
video stream twice, wasting bandwidth. Note, too, that one region turns off
the video’s audio track with the soundLevel attribute. If two clips have audio
tracks, RealPlayer blends the tracks. In this case, that’s unnecessary because
the tracks are identical.
310

P A R T
VI

Par t V I: TIMING AND LINKING CLIPS
Streaming media flows. Controlling when your media clips play is
a crucial component for delivering a successful presentation.
Chapter 13 introduces you to SMIL timing. Chapter 14 builds
on that knowledge by explaining advanced timing features. To
learn how to link your presentation to a Web page or another
streaming presentation, read Chapter 15.

C H A P T E R
13

 Chapter 13: BASIC TIMING
SMIL’s timing attributes help you to tailor your presentation. You
can use these attributes to adjust when clips start to play. Or you
might stream just one scene from a video to create a preview without
encoding a separate video clip. This chapter describes the basic
SMIL timing features. Once you master these features, you can
tackle advanced timing as described in Chapter 14.

Understanding Basic Timing
SMIL timing attributes are optional, giving you a powerful way to customize
presentations by specifying when and how long elements play. Before you use
SMIL timing attributes, though, you should know how you want to construct
your overall presentation timeline. For more on this, see “Step 5: Organize the
Presentation Timeline” on page 51.

Note: This chapter uses the term element to indicate anything
that can use a SMIL timing attribute. For simple presentations,
elements are typically clip source tags like <video/> and group
tags like <par>. But you can also use timing attributes in tags
such as <prefetch/>, <animate/>, and <area/>.

Groups Create the Timing Superstructure

The <seq>, <par>, and <excl> group tags set the basic timing structure for a
presentation. To stream a sequence of videos, for example, you do not need to
use SMIL timing attributes. You simply arrange the clips in a <seq> group as
described in Chapter 11. Your presentation timeline then flows automatically
from the clip timelines and the group arrangement. You need to add timing
attributes only if, for example, you want to add a pause between each clip,
shorten the time a clip plays, or play just one scene from a clip.
313

RealNetworks Production Guide
Timing is Relative to Groups

In general, timing attributes for an element are relative to the group that
contains the element. For elements in a <seq> group, timing attributes are
relative to the end of the preceding element. For elements in a <par> or <excl>
group, they’re relative to the start of the group. The following example shows
a sequence that consists of a parallel group followed by a video clip. For the
audio clip, for example, the timing attributes are relative to the start of the
<par> group:

<body>
 <seq ...timing is relative to the start of the presentation...>
 <par ...timing is relative to the start of the sequence...>
 <textstream ...timing is relative to the start of the parallel group.../>
 <audio ...timing is relative to the start of the parallel group.../>
 </par>
 <video ...timing is relative to the end of the preceding parallel group.../>
 </seq>
</body>

Timing Attributes Covered in this Chapter

The following are the basic SMIL timing attributes described in this chapter:

• begin, end, dur

These attributes set the total length of time that an element plays. They
are the most widely used of the SMIL timing attributes. See “Setting Begin
and End Times” on page 316 and “Setting Durations” on page 319.

• clipBegin, clipEnd

These attributes let you play just a portion of a clip, such as a certain scene
out of a video. See “Setting Internal Clip Begin and End Times” on page
318.

• min, max

These attributes let you set absolute boundaries for how little or how long
an element can play. See “Setting Minimum and Maximum Times” on
page 322.

• endsync

This attribute ends a parallel or exclusive group when a certain element in
the group ends. See “Ending a Group on a Specific Clip” on page 322.
314

CHAPTER 13: Basic Timing
• repeatCount , repeatDur

The repeatCount and repeatDur attributes let you repeat an element a
specific number of times, or for as many repetitions as possible within a
certain time. See “Repeating an Element” on page 325.

• mediaRepeat

With mediaRepeat, described in “Stopping a Clip’s Encoded Repetitions”
on page 327, you can stop the repetitions encoded into a clip such as an
animated GIF.

• fill, erase, fillDefault

These attributes let you keep an element visible or remove it when it is no
longer active. See “Setting a Fill” on page 329 and “Specifying a Default
Fill” on page 336.

Specifying Time Values
SMIL provides two methods to specify time values, a shorthand method and a
“normal play time” method. Both methods provide the same capabilities.
Although you can use both methods within the same SMIL file, using just one
method makes authoring SMIL presentations easier.

Tip: RealPlayer displays a presentation’s elapsed time in one-
second increments. You can click the time-elapsed field to
display time values to 1/10th of a second, however. This can
help you decide what timing values you want to use with a clip.

Using Shorthand Time Values

The shorthand method is best suited for specifying short, simple timing
values such as five seconds, ten minutes, or 1-1/2 hour. As demonstrated in
the following table, the shorthand markers of h, min, s, and ms provide an easy
way to designate a timing value for a SMIL element.

Timing Shorthand Markers and Examples

Timing Marker Specifies Example Example Value

h hours end=“2.5h” 2 hours, 30 minutes

min minutes end=“2.75min” 2 minutes, 45 seconds
 (Table Page 1 of 2)
315

RealNetworks Production Guide
Tip: Decimal values are not required. You can express two
seconds as “2s” or “2.0s”, for example.

Using the Normal Play Time Format

The “normal play time” format for SMIL timing is suited for long, complex
timing values, such as specifying one hour, fourteen minutes, 36 and 1/2
seconds. The normal play time format values use the following syntax:

hh:mm:ss.xy

where:

• hh is hours

• mm is minutes

• ss is seconds

• x is tenths of seconds

• y is hundredths of seconds

Only the ss field is required. When the time value does not include a decimal
point, the last field is read as the seconds. For example, 1:30 means 1 minute
and 30 seconds, whereas 1:30:00 means 1 hour and 30 minutes. Note that all
of the following values are equivalent to 90 minutes:

begin=”1:30:00.0”
begin=”90:00”
begin=”5400”

Setting Begin and End Times
The begin and end attributes affect when an element starts or stops,
respectively. This section explains how to use begin and end with the basic
SMIL timing values. Chapter 14 describes advanced timing values that you can
use with begin and end to add interactivity to a presentation.

s seconds end=“15.55s” 15 seconds, 550 milliseconds

ms milliseconds end=“670.2ms” 670.2 milliseconds

Timing Shorthand Markers and Examples (continued)

Timing Marker Specifies Example Example Value

 (Table Page 2 of 2)
316

CHAPTER 13: Basic Timing
Using a Begin Time with a Clip

Using the begin attribute, you can vary the point at which a clip starts to play
back within the presentation timeline:

<video src=”video1.rm” begin=”20.5s”/>

Were the preceding clip in a <par> or <excl> group, it would start playing at
20.5 seconds after the group became active. The begin attribute thereby lets
you stagger the starting times of clips contained in these groups. Were this
clip in a <seq> group, there would be 20.5 seconds of blank time before the clip
starts. The begin attribute therefore lets you insert delays into sequences.

For More Information: See also “Setting a Fill with Sequential
Clips” on page 331

Using an End Time with a Clip

You can set an end attribute alone or in combination with a begin attribute as
shown in the example below, which sets the clip to end at 62.7 seconds into its
part of the presentation timeline:

<video src=”video1.rm” begin=”20.5s” end=”62.7s”/>

Note that the end time is measured from the point where the clip would start
if no begin time were set. To calculate how long the clip is active, subtract the
begin value from the end value. In the preceding example, the clip is active a
total of 42.2 seconds (62.7 minus 20.5) regardless of the length of its internal
timeline. If the clip’s timeline were shorter than 42.2 seconds, the clip’s last
frame would display until the full 42.2 seconds had elapsed.

Tip: The dur attribute gives you an alternative and sometimes
simpler way to specify how long an element plays. For more
information, see “Setting Durations” on page 319

Using Begin and End Times with Groups

In group tags, the begin and end attributes function much as they do in clip
tags:

• If a <seq>, <par>, or <excl> group is part of a larger sequence, a begin
attribute inserts “blank time” before the group becomes active. During
this blank time, RealPlayer is not paused, but no activity occurs onscreen.
317

RealNetworks Production Guide
• If a <seq>, <par>, or <excl> group is contained in a larger <par> group, a
begin value delays when the group becomes active relative to other
elements in the larger <par> group.

• If a <seq>, <par>, or <excl> group is contained in a larger <excl> group, a
begin value determines when it becomes active within the <excl> group.

• An end attribute in a <seq>, <par>, or <excl> group determines when the
group, and hence all clips in the group, stop playing. The following
example shows a parallel group within a larger sequence. The <par> group
has both a begin and an end attribute:

<seq>
 ...preceding elements in the sequence...
 <par begin=“5s” end=“3.5min”>
 ...clips in the parallel group...
 </par>
 ...following elements in the sequence...
</seq>

In this example, the begin value delays group playback until 5 seconds
after the preceding element in the sequence stops. The end attribute stops
all clips in the <par> group after 3.5 minutes, regardless of their playback
states. If all clips conclude before that time, there will be blank playback
time before the next element in the sequence starts.

Setting Internal Clip Begin and End Times
The clipBegin and clipEnd attributes specify a clip’s internal timing marks
where playback begins and ends. They allow you to play just part of a clip that
has an internal timeline, such as an audio, video, or animation clip. They have
no effect on groups or static clips such as still images, though. The following
example uses clipBegin and clipEnd with a video clip:

<video src=”video1.rm” clipBegin=”10s” clipEnd=”50s”/>

Here, the clip starts playing at its internal 10-second mark rather than at its
encoded beginning. It stops when it reaches its 50-second mark, having played
for a total of 40 seconds.

Warning! Do not use clipBegin and clipEnd for a live broadcast
or when delivering clips with a Web server. For more
information, see “Limitations on Web Server Playback” on
page 527.
318

CHAPTER 13: Basic Timing
Combining clipBegin and clipEnd with begin and end

You can combine clipBegin and clipEnd attributes with begin and end
attributes. In the following sample, a begin time is added to the preceding
example:

<video src=”video1.rm” clipBegin=”10s” clipEnd=”50s” begin=”5s”/>

The begin time delays the clip’s normal starting point by 5 seconds. When this
time elapses, the clip starts at its 10-second internal timeline marker and plays
for 40 seconds, which takes it to the 50-second mark of its internal timeline.
In this case, the clipEnd attribute determines how long the video is active. You
could also add an end attribute to modify this behavior, as shown in the
following example:

<video src=”video1.rm” clipBegin=”10s” clipEnd=”50s” begin=”5s” end=”50s”/>

Combined with the begin value, the end value of 50 means that the clip’s
“window of activity” within the presentation is 45 seconds. Because the clip
stops playing after 40 seconds, there is an extra 5 seconds during which the
clip does not play but remains active and frozen onscreen. In contrast, if you
used end=“30” , the begin and end values would set a playback time of 25
seconds, overriding the specified clipEnd time.

Setting Durations
The dur attribute controls how long an element stays active after it starts to
play. The following example ends the video after 85 seconds, regardless of the
length of the clip’s internal timeline. If the video’s timeline is shorter than 85
seconds, the video’s last frame appears frozen onscreen until the duration
elapses:

<video src=”video1.rm” dur=”85s”/>

A common use of dur is to control how long a static clip such as an image
appears onscreen. Because a static clip has an intrinsic duration of zero
seconds, using dur is the easiest way to set the clip’s playback time. The
following example displays an image for two minutes:

Choosing end or dur

In the preceding example, end=“2min” would achieve the same result as
dur=“2min” because no begin time is used. When a begin attribute is present,
319

RealNetworks Production Guide
you need to calculate the end value relative to the begin value. With a dur
attribute, however, you just set the total duration you want. This makes dur
easier to use in some cases.

For example, suppose that you want a video to play for exactly two minutes. If
a begin=“20.5s” value delays the video playback for 20.5 seconds, you have to
calculate the end value by adding the begin value to the total playback time you
want, as shown in the following example (140.5 - 20.5 = 120 seconds):

<video src=”video1.rm” begin=”20.5s” end=”140.5s”/>

With a dur attribute, on the other hand, you just specify the total playback
time, as shown here:

<video src=”video1.rm” begin=”20.5s” dur=”2min”/>

As the preceding examples illustrate, you can use either end or dur depending
on how you want to measure time for clip playback. For most simple timing
needs, you use either end or dur, but not both. If an element includes both end
and dur, the attribute that specifies the shorter playback time is used.

Setting a Duration for the Length of Media Playback

With clips that have internal timelines, you can use dur=“media” to set the
clip’s duration to the length of its internal timeline. This is useful only when
you include another timing value, such as an end attribute. Consider the
following example:

<video src=”video1.rm” end=”10min” dur=”media”/>

Because this clip uses both end and dur, the attribute specifying the shorter
playback time is used. Suppose the video clip normally runs 15 minutes. In
this case, end=“10min” ends the clip after 10 minutes. But if the clip runs just 5
minutes, dur=“media” ends the clip when it finishes its normal playback. If you
did not have dur=“media” in this case, the end=“10min” value would keep the
clip active an additional 5 minutes, unnecessarily lengthening playback.

Using an Indefinite Duration

You can use dur=“indefinite” to extend an element’s duration indefinitely. As
with dur=“media”, dur=“indefinite” is typically used with another timing
attribute that ends the element. For example, the following clip stays active
indefinitely until the viewer clicks the image with the ID stop:
320

CHAPTER 13: Basic Timing
<par>
 <ref src=”...” dur=”indefinite” end=”stop.activateEvent” region=”play”/>

</par>

When an element has an indefinite duration, RealPlayer’s timeline slider does
not operate because the presentation’s end time cannot be known in advance.
Hence, viewers cannot seek through the presentation. The timeline slider will
work, though, if a group timing attribute overrides the element’s indefinite
duration. For example, if you added dur=“10min” to the <par> tag in the
preceding example, RealPlayer’s timeline slider would operate and indicate a
presentation lasting ten minutes.

For More Information: Chapter 14 explains the advanced timing
commands that let you end a clip on a certain event, such as
when another clip is clicked.

Tips for Setting Durations

• Like the end attribute, the dur attribute in a <seq>, <par>, or <excl> tag sets
an absolute duration for the group. For more information, see “Using
Begin and End Times with Groups” on page 317.

• The dur=“media” and dur=“indefinite” attributes are compatible with a
clipBegin value. A valid clipEnd value always overrides these durations,
however.

• The repeatCount attribute can play a percentage of an element when you
don’t know how long the element lasts. For example, you can play half of a
clip by using repeatCount=“0.5” instead of dur. With a three-minute clip, for
example, repeatCount=“0.5” is equivalent to dur=“1.5min”.

For More Information: For more on repeatCount, see “Repeating
an Element a Certain Number of Times” on page 325.

• When you use an image in a <par> or <excl> group, you can pick a simple
duration, such as dur=“5s” , and include fill=“freeze” in the source tag. This
freezes the image until the <par> group ends, or until another element in
the <excl> group replaces the image. This method is preferred over using
dur=“indefinite” because the indefinite value can prevent RealPlayer from
determining how long the entire group lasts.
321

RealNetworks Production Guide
For More Information: For instructions on using the fill
attribute, See “Setting a Fill” on page 329.

Setting Minimum and Maximum Times
This section to be added.

Ending a Group on a Specific Clip
By default, a <par> or <excl> group ends when all elements in the group finish
playing. You can modify this behavior with the endsync attribute. Suppose a
long clip of background music plays in parallel with a shorter RealText clip.
Using endsync, you can stop the group when the RealText clip finishes, cutting
off the background music once the text has displayed. The endsync attribute
has no effect in <seq> tags or clip source tags. The following table lists the
endsync values.

Stopping a Group After the Last Clip Plays

The two values endsync=“last” and endsyc=”all” are similar. Both end a <par> or
<excl> group when the last clip finishes playing. (Here, “last” refers to playback
times and not the order that clips are listed in the group.) Because the default
value is endsync=”last” , you do not need to add this value to the group tag
explicitly.

In the following example, the group behavior would be the same if you used
just the <par> tag. Here, the parallel group concludes when the video ends, as
long as the video plays more than two minutes. If the video has a shorter
duration, the group ends when the image clip’s two-minute duration expires:

 endsync Attribute Values

Value Function Reference

all Ends the group once all clips have finished. page 322

first Ends the group when the first clip finishes. page 323

ID Ends the group when a specific clip finishes. page 323

last Ends the group when the last clip finishes. This is the default. page 322
322

CHAPTER 13: Basic Timing
<par endsync=“last”>
 <video id=”vid1” src=”video1.rm” region=”video_region”/>

</par>

When all group elements use basic timing values, as in the preceding example,
endsync=”all” functions just like endsync=”last”. The difference between these
values arises only when elements in the group use interactive timing values,
which are described in Chapter 14. Consider the following example of an
exclusive group in which each clip plays only when a button is clicked:

<excl endsync=”all”>
 <video src=”video1.rm” begin=”button1.activateEvent” .../>
 <video src=”video2.rm” begin=”button2.activateEvent” .../>
 <video src=”video3.rm” begin=”button3.activateEvent” .../>
</excl>

In this case, using a group tag of <excl> or <excl endsync=”last”> would not
work. When this exclusive group starts, no clips are active because playback
depends on the viewer clicking a button. The default value of endsync=”last”

immediately ends the group in this case. The endsync=”all” value keeps the
group active until all clips in the group have played, however. In the preceding
example, the group ends after the viewer has clicked all three buttons to play
all three videos.

For More Information: Exclusive groups are described in
“Creating an Exclusive Group” on page 261. The section
“Defining a Mouse Event” on page 348 explains the
activateEvent timing value.

Stopping the Group When a Specific Clip Finishes

The values endsync=”first” and endsync=”ID” can stop a <par> or <excl> group
when a specific element stops playback. Use endsync=“first” to stop the group
when the first element in the group stops playing. (Note that “first” refers to
playback times and not the order that elements are listed in the group.) All
other elements in the group stop playing at that point, regardless of their
playback statuses or any timing parameters specified for them.

The attribute endsync=“ID” causes the group to conclude when the designated
element ends playback. All other elements in the group stop playing at that
point, regardless of their playback statuses or any timing parameters used
323

RealNetworks Production Guide
with them. The designated element must have a corresponding id value in its
source tag, as illustrated in the following example:

<par endsync=“vid1”>
 <video id=”vid1” src=”video1.rm” region=”video_region”/>
 <textstream src=”moreinfo.rt” region=”text_region”/>
</par>

Note: Because all, first, last, and media are endsync values, do not
use these words as clip IDs when using endsync=”ID”.

Tips for Using the endsync Attribute

• A dur or end attribute in a <par> or <excl> tag overrides endsync. In these
cases, RealPlayer ends the group as specified by the dur or end attribute,
not the endsync attribute.

• Timing attributes used with the targeted element will affect the group
ending point. If you use endsync=“ID” and select the ID of an element that
repeats twice, for example, both repetitions must finish before the group
stops.

• If you repeat the group, each repetition obeys the endsync attribute.
Suppose that you define the following parallel group:

<par endsync=“first” repeatCount=“2”>

The group stops when the first element stops, then repeats. On the second
repetition, the group again stops when the first element stops.

• When an element can restart because it has multiple begin times, the
actual or possible restarts do not affect endsync. Consider the interactive
example discussed previously:

<excl endsync=”all”>
 <video src=”video1.rm” begin=”button1.activateEvent” .../>
 <video src=”video2.rm” begin=”button2.activateEvent” .../>
 <video src=”video3.rm” begin=”button3.activateEvent” .../>
</excl>

By default, each video can restart whenever the viewer clicks the video’s
start button. The viewer may play video1.rm, then video2.rm, then video1.rm
again, then video2.rm again. These restarts do not affect the endsync
attribute. But once the viewer has played each of the three videos at least
once, the endsync attribute ends the <excl> group, preventing the videos
from restarting again.
324

CHAPTER 13: Basic Timing
For More Information: The restart and restartDefault attributes
give you more control over restart possibilities. For details, see
“Controlling Whether an Element Restarts” on page 354.

Repeating an Element
Using a repeat attribute, you can specify how many times, or for how long, an
element repeats. You can also make an element repeat indefinitely. The
following table summarizes these attributes.

Repeating an Element a Certain Number of Times

The repeatCount attribute repeats an element a specific number of times. You
can use integer values such as 2 or 4 to specify an exact number of repetitions.
You can also use decimal values to stop the clip during a repetition. In the
following example, the video plays 3-1/2 times:

<video src=”video1.rm” repeatCount=”3.5”/>

Repeating an Element a Specific Amount of Time

The repeatDur attribute repeats an element for a specified amount of time. Like
a begin, end, or dur attribute, the repeatDur attribute uses a standard SMIL
timing value, as described in “Specifying Time Values” on page 315. When you
use repeatDur, the element repeats as many times as it can within the specified
time, shown in the following example as five minutes:

<video src=”video1.rm” repeatDur=”5min”/>

The repeatDur attribute functions like end, so if you include a begin time, the
total playback time is the repeatDur value minus the begin value. For example,
the following clip is active within the presentation timeline for five minutes,
but it does not play during the first minute. Its repeating cycles then last a
total of four minutes:

Repeat Attributes

Attribute Value Function Reference

repeatCount integer|indefinite|
fractional_value

Repeats the clip the specified number
of times, or indefinitely.

page 325

repeatDur time_value|
indefinite

Repeats the clip the specified amount
of time.

page 325
325

RealNetworks Production Guide
<video src=”video1.rm” begin=”1min” repeatDur=”5min”/>

Specifying the Length of Each Repeating Cycle

A dur attribute included with repeatCount or repeatDur sets the total time that
must elapse before the element repeats. For example, each repetition of the
following clip lasts three minutes. Because the clip plays twice, the total
playing time is six minutes:

<video src=”video1.rm” repeatCount=”2” dur=”3min”/>

If the video in the preceding example has an internal timeline longer than
three minutes, the video stops after three minutes and immediately repeats,
playing again for just three minutes. If the video runs less than three minutes,
its last frame appears frozen until the full three minutes have elapsed.

Setting a Total Playback Time

An end attribute sets the total playback time during which an element can
repeat. You can use it with or without dur. For example, the repeatCount , dur,
and end values in the following tag cause the clip to play one cycle in three
minutes, repeat, then stop after playing a total of five minutes. This places the
end of playback at two minutes into the second cycle:

<video src=”video1.rm” repeatCount=”2” dur=”3min” end=”5min”/>

Looping Playback Indefinitely

An indefinite value used with a repeatCount or repeatDur attribute causes an
element to repeat until another timing attribute or user event stops the loop.
In the following example, the audio clip repeats continuously until the viewer
clicks the RealPlayer Stop button:

<audio src=”song.rm” repeatCount=”indefinite”/>

As explained in “Specifying the Length of Each Repeating Cycle” on page 326,
a dur attribute can set the length of each repeating cycle. In the following
example, each loop lasts 30 seconds:

<audio src=”song.rm” repeatDur=”indefinite” dur=”30s”/>

Using the indefinite value for an element in a sequence prevents the sequence
from ending unless the <seq> tag itself specifies the end time with a dur or end
attribute. With a <par> group, you can use endsync=”ID” to stop the group
326

CHAPTER 13: Basic Timing
when an element other than the looping element finishes. In the following
example, the audio loop stops when the RealPix slideshow concludes:

<par endsync=”pix”>
 <audio src=”background.rm” repeatDur=”indefinite”/>
 <ref src=”promo.rp” id=”pix” region=”images_region”/>
</par>

For More Information: See “Ending a Group on a Specific Clip”
on page 322 for more information on endsync.

Stopping a Clip’s Encoded Repetitions

For clips such as animated GIF images, you can halt the clip’s native
repetitions by adding mediaRepeat=“strip” to the clip’s source tag:

Although the mediaRepeat=“strip” attribute stops a clip from repeating, it does
not necessarily render a clip static. For example, an animated GIF image may
consist of ten unique frames that play in sequence, with the sequence
repeating indefinitely. If mediaRepeat=“strip” is used, the ten unique frames
play in sequence once, but do not repeat.

Once you strip out a clip’s native repetitions, you can use timing attributes to
set a different pattern of repetition. Suppose that a GIF image shows one
frame every second for ten seconds, then repeats this cycle indefinitely. To add
a delay of five seconds between each cycle, you can use the attributes shown in
the following example:

In this example, the mediaRepeat attribute strips out the GIF image’s native
repetitions. The dur attribute sets the repeating cycle to 15 seconds, meaning
the image animates as normal for 10 seconds, then pauses for five seconds.
The repeatDur attribute makes this 15-second cycle repeat indefinitely.

Managing Bandwidth with Repeating Clips

When you repeat a clip streamed with RTSP or HTTP, each repetition
consumes bandwidth because RealPlayer does not cache the clip. Alternatively,
you can use CHTTP to cache a repeating clip on RealPlayer. The clip then
consumes bandwidth only the first time it plays. You should use CHTTP only
for small clips, however, because the clip cannot be larger than RealPlayer’s
cache size of a few Megabytes.
327

RealNetworks Production Guide
For More Information: For more information on using CHTTP,
see “Caching Clips on RealPlayer” on page 217.

Leaving Bandwidth Available for Repeating Cycles

When you stream with RTSP or HTTP, RealPlayer prebuffers each repetition
to keep the presentation from pausing when the clip replays. The presentation
therefore needs spare bandwidth for buffering the repeating cycles. To
determine how much bandwidth to reserve, divide the clip’s preroll by the
amount of time that the clip plays in each cycle. Next, multiple that number
by the clip’s streaming bandwidth.

Suppose that a RealAudio clip streams at 20 Kbps, plays for 60 seconds, and
requires 8 seconds of prebuffering. The reserve bandwidth is the following:

((8/60) x 20) = 2.7 Kbps

The inclusion of the reserve bandwidth sets the total streaming bandwidth
requirement to 22.7 Kbps. This is OK for 56 Kbps modems, but too high for
28.8 Kbps modems, which have a 20 Kbps maximum as listed in the table
“Maximum Streaming Rates” on page 46.

Tip: To determine how much preroll a clip requires, open the
clip in RealPlayer, and use File>Clip Properties>Clip Source to
view the buffering information.

Helix Server Streams Used with Repeating Clips

RealPlayer never requests more than two streams for a repeating clip. If you
use repeatCount=“8”, for example, RealPlayer requests and plays the first
stream. As it does so, it prebuffers the second, identical stream. As it plays the
second stream, it requests the first stream again, prebuffering it for the third
repetition, and so on.

Tips for Repeating Elements

• Keep in mind that when an element does not repeat, end and dur both
specify the clip’s playing time, with the shorter value used. When an
element includes repeatDur or repeatCount, though, end and dur have
different functions. The end attribute sets the total time for all repetitions,
whereas the dur attribute sets the length of each repeating cycle.
328

CHAPTER 13: Basic Timing
• With the indefinite value (and only the indefinite value), repeatCount and
repeatDur function identically. Therefore, it doesn’t matter if you use
repeatCount=”indefinite” or repeatDur=”indefinite”.

• A decimal value for repeatCount is useful for playing just part of an element
when you don’t know how long the element lasts. For example, you can
play half of any clip by using repeatCount=“0.5” . With a three-minute clip,
for example, repeatCount=“0.5” is equivalent to dur=“1.5min”.

• You can use the clipBegin and clipEnd attributes, described in “Setting
Internal Clip Begin and End Times” on page 318, with repeating clips.

• When you embed a SMIL presentation in a Web page, you can use the
<EMBED> tag’s LOOP or NUMLOOP parameter to repeat the entire
presentation. For more information, see “Setting Automatic Playback” on
page 501.

Setting a Fill
When an element ends but is not immediately replaced by another element,
you can use the fill attribute to specify whether the element disappears or
remains onscreen. Useful primarily with visual clips and elements such as
SMIL animations, the fill attribute does not affect audio-only clips. The
following table summarizes the fill attribute values.

The fill action comes after the clip’s end time, as set by its internal timeline, or
as specified by any timing values such as dur, end, repeatCount, or repeatDur.
Consider the following example:

fill Attribute Values

Value Function Reference

auto Makes fill behavior depend on timing attributes. page 330

default Lets fillDefault control the fill behavior. page 336

freeze Freezes element when it finishes. page 331

hold Keeps element visible until the group ends. page 331

remove Makes element disappear when it finishes. page 331

transition Freezes clip long enough for a transition effect to occur.
This is used only with clips, and not with group tags.
Chapter 16 explains the transition value.

page 414
329

RealNetworks Production Guide
<par>
 <ref src=”...” id=”clip_1” region=”region_1” dur=”3min” fill=”...”/>
 <ref src=”...” id=”clip_2” region=”region_2” dur=”5min”/>
</par>

The dur=“3min” attribute keeps the first clip active exactly three minutes,
regardless of the length of its internal timeline. The fill attribute takes effect
when this duration elapses. Suppose the fill attribute freezes the clip onscreen.
Because the second clip’s duration makes the entire <par> group last five
minutes, the first clip freezes for two minutes past its duration. The following
figure illustrates this fill period.

Fill Period for Two Clips in a Parallel Group

Using an Automatic Fill

If you do not use a fill attribute with an element, and you do not set a
fillDefault value in a group that contains the element, the element behaves as if
fill=“auto” is set. (You can also set fill=“auto” explicitly.) The effect of the auto
value depends on whether certain timing elements are used:

• If the element includes a dur, end, repeatCount or repeatDur timing attribute,
the fill=“auto” value is equivalent to fill=“remove”. For example, a video that
uses a dur attribute disappears when the duration expires.

• If the clip does not include any of these timing attributes, the fill=“auto”
value is equivalent to fill=“freeze”. For example, the final frame of a video
that does not use any SMIL timing values freezes until the group that
contains the clip ends.

fill="..."dur="3min"

dur="5min"
330

CHAPTER 13: Basic Timing
For More Information: The following sections explain how
fill=”remove” and fill=”freeze” attributes affect clips in different
types of groups. For more on fillDefault, see “Specifying a
Default Fill” on page 336.

Setting a Fill with Sequential Clips

In a sequence of clips, a clip automatically disappears when it ends, so each
clip already behaves as if it has a fill=“remove” attribute. The fill=“freeze” value
affects a clip in a sequence only if the subsequent clip has a delayed start. In
the following example, the second clip’s begin time inserts a five-second delay
before it plays. The fill=“freeze” value keeps the first clip visible during the
delay:

<seq>
 <video src=”video1.rm” region=”video_region” fill=”freeze”/>
 <video src=”video2.rm” region=”video_region” begin=”5s”/>
</seq>

A fill=“hold” value displays a clip until the sequence ends. In the following
example, an image used as a background displays first. Next, a RealText clip
and video play in parallel in front of the image. Without the hold value, the
image would disappear as soon as its duration elapsed. But the hold value
keeps the clip visible until the entire sequence ends:

<seq>

 <par>
 <textstream src=”titles.rt” region=”text_region” fill=”freeze”/>
 <video src=”video1.rm” region=”video_region”/>
 </par>
</seq>

For the last clip in a sequence, fill=“freeze” and fill=“hold” function similarly.
They have an effect only if the <seq> tag has a dur or end value that keeps it
active after all clips have played. If all clips finish playing after eight minutes,
but the <seq> tag has a dur=“10min” attribute, for instance, a fill=“freeze” or
fill=“hold” attribute for the last clip keeps that clip visible for the final two
minutes of the sequence.
331

RealNetworks Production Guide
Setting a Fill in Parallel Groups

Use fill=“remove” with a clip in a <par> group to make the clip disappear when
it finishes playing. In the following example, the RealText clip disappears as
soon as it finishes playing. Assuming that the video clip has a longer timeline,
the parallel group ends when the video finishes playing:

<par>
 <textstream src=”titles.rt” region=”text_region” fill=”remove”/>
 <video src=”video1.rm” region=”video_region”/>
</par>

In a <par> group, fill=“freeze” and fill=“hold” both keep a clip visible until the
group completes. In the following example, the final text block of the RealText
clip stays visible when the clip finishes playing. Assuming that the video clip
has a longer timeline, the parallel group ends with the video clip:

<par>
 <textstream src=”titles.rt” region=”text_region” fill=”freeze”/>
 <video src=”video1.rm” region=”video_region”/>
</par>

Setting a Fill in Exclusive Groups

Use fill=“remove” on a clip in an <excl> group to make the clip disappear when
it finishes playing. In the following example, each video clip disappears as
soon as it finishes playing. If a clip finishes playing before another clip
becomes active, no clip is visible on the screen:

<excl>
 <video src=”video1.rm” region=”video_region” begin=”...” fill=”remove”/>
 <video src=”video2.rm” region=”video_region” begin=”...” fill=”remove”/>
</excl>

Use fill=“freeze” to keep a clip in an <excl> group visible until another clip in
the group plays. Use fill=“hold” to keep the clip visible until the entire <excl>
group concludes. In this case, each opaque clip needs to display in a separate
region to prevent other clips from obscuring it.

Displaying a Clip Throughout a Presentation

The attribute fill=“hold” keeps a clip visible only until the group that contains
it ends. You can add erase=“never” to fill=“hold” to keep a clip visible for the
entire presentation, and even after the presentation has ended. This feature,
which does not work in group tags, is useful for adding a background to a
332

CHAPTER 13: Basic Timing
presentation that contains any number of groups, as shown in the following
example:

<body>
 <seq>

 ...other groups and clips...
 </seq>
</body>

In the preceding example, the background clip is listed as the first element in
a sequence that contains other clips and groups. The fill and erase values keep
the background clip visible while the subsequent clips and groups play.

Summary of Common Clip fill Values

Although the fill attribute can be used for groups and other elements such as
SMIL animations, the most common use is with clips inside of groups. The
following table summarizes how the most commonly used fill values affect
clips that display in <seq>, <par>, and <excl> groups.

fill Attribute Values for Clips in <seq>, <par>, and <excl> Groups

Clip Attributes Group Function

fill=”remove”

<seq> Clip disappears when it stops playing.

<par> Clip disappears when it stops playing.

<excl> Clip disappears when it stops playing.

fill=”freeze”

<seq> Clip freezes after playback only for the duration of the
subsequent clip’s begin value, such as begin=”5s”.

<par> Clip freezes until the entire <par> group concludes.

<excl> Clip freezes until another clip in the <excl> group plays.

fill=”hold”

<seq> Clip freezes until the entire <seq> group concludes.

<par> Clip freezes until the entire <par> group concludes.
Identical to fill=”freeze” .

<excl> Clip freezes until the entire <excl> group concludes.

fill=”hold”
erase=”never”

<seq> Clip displays throughout the presentation.

<par> Clip displays throughout the presentation.

<excl> Clip displays throughout the presentation.
 (Table Page 1 of 2)
333

RealNetworks Production Guide
For More Information: See “Using Clip Fills with Transition
Effects” on page 414 for more information on fill=“transition”.

Setting a Group Fill

You can also use a fill attribute with a value of remove, freeze, or hold in a group
tag. Consider the following example, in which album credits and cover art
display before a song plays:

<seq>
 <par fill=”hold”>

 <textstream src=”credits.rt” id=”clip2” dur=”60s” region=”credits_region”/>
 </par>
 <audio src=”song1.rm” id=”clip3” dur=”80s”/>
</seq>

In this example, the fill=“freeze” value for the JPEG album cover keeps that clip
visible as long as the <par> group is active. The <par> group itself has a
fill=“hold” value that keeps its final state visible until the containing <seq>
group finishes. In other words, the <par> group’s fill=“hold” value extends the
first two clips’ fill periods until the <seq> group ends. The result is that the
credits and cover image remain visible until the song completes, as the
following illustration shows.

fill=”transition”

<seq> Clip freezes long enough for the transition effect to occur.

<par> Clip freezes long enough for the transition effect to occur.

<excl> Clip freezes until another clip in the group plays, then
remains long enough for the transition effect to occur.

fill Attribute Values for Clips in <seq>, <par>, and <excl> Groups (continued)

Clip Attributes Group Function

 (Table Page 2 of 2)
334

CHAPTER 13: Basic Timing
Clip Fill Periods Extended by a Group Fill

Tip: To set a fill value for a group and pass that value onto the
elements in the group, use fillDefault instead of fill in the group
tag.

Tips for Setting a Fill

• By default, a clip acts as if fill=“freeze” is set unless the clip tag contains a
dur, end, repeatCount or repeatDur attribute. In tags where a dur, end,
repeatCount or repeatDur attribute is present, the clip acts as if fill=“remove”
is set. Setting a fill value explicitly, though, always overrides the default.

• In a <par> group only, you can use erase=“never” with fill=“freeze” to display
a clip throughout the entire presentation. Because fill=“hold” along with
erase=“never” does the same for clips in any type of group, however, it is
easier always to use this latter combination.

• Using the dur attribute along with fill=“remove” is the simplest means for
setting how long a graphic image, which has no internal timeline, appears
onscreen. In the following example, the image disappears 14.5 seconds
after it appears:

20 seconds0 60 seconds

fill="freeze"

140 seconds

fill="hold"

fill="hold"
335

RealNetworks Production Guide
• Using a short dur value along with fill=“freeze” is the most common
method for displaying a graphic image for as long as a parallel group is
active:

<par>

 ...other elements in the parallel group...
</par>

• As long as a clip appears onscreen, any hyperlink defined for it remains
active, unless the hyperlink is specifically deactivated at an earlier point. If
a video links to a Web page, for example, the Web page still opens if the
viewer clicks the link after the video has stopped playing and appears
frozen onscreen. For more on linking, see Chapter 15.

• In SMIL 2.0, the fill attribute works slightly differently than it does in
earlier versions of RealPlayer that supported SMIL 1.0. For more
information, see “Behavioral Changes” on page 204.

Specifying a Default Fill
You can use the fillDefault attribute in a group tag to set a fill value for that
group and its elements, whether those elements are clips or other groups. All
elements within the group receive the default fill value unless they have
another fill value explicitly set. The following table lists the possible fillDefault
values.

Adding a Default Fill to a Group

The following are the general rules for using fillDefault in a group tag:

 fillDefault Attribute Values

Attribute Function Reference

auto Makes fill behavior depend on timing attributes. page 330

freeze Freezes elements in the group when they finish playing. page 331

hold Freezes elements in the group until the group ends. page 331

inherit Makes each element inherit the fillDefault setting from the
containing group. This is the default value.

page 337

remove Makes elements in the group disappear when finished. page 331

transition Freezes clips in the group long enough for a transition effect
to occur. Chapter 16 explains the transition value.

page 414
336

CHAPTER 13: Basic Timing
• If a fillDefault value is set in a clip’s group tag, and no fill value is set for
the clip, the clip uses the group’s fillDefault value.

• Setting a fill value explicitly in a clip source tag always makes the clip use
that value regardless of any fillDefault setting in the group tag.

• A group that does not have a fillDefault value explicitly set will inherit the
fillDefault value from a larger group that contains it.

The next example illustrates the fillDefault attribute set in a <par> group, with
some of the group elements overriding the attribute value:

<par fillDefault=”freeze”>

 <video src=”video1.rm” region=”video_region” fill=”default”/>
 <textstream src=”titles.rt” region=”text_region” fill=”remove”/>
</par>

The following fill actions occur in this group:

• The <par> group’s fillDefault=“freeze” value sets its fill value to freeze, and
passes this value along to all its elements.

• The tag does not include a fill attribute, so it receives a fill=“freeze”
value from the <par> tag.

• The <video/> tag’s fill=“default” attribute makes it receive the freeze value
just like the tag. In other words, fill=“default” is the default value
used with the containing group has a fillDefault attribute. (The attribute
fill= “auto” is the default value if no fillDefault attribute is used.) Thus,
setting fill=“default” explicitly has the same effect as leaving fill out of the
tag altogether.

• The <textstream/> tag includes a fill=“remove” attribute, which overrides
the fill=“freeze” value it receives from the <par> tag.

Inheriting a Default Fill from a Containing Group

A group that does not have a fillDefault value explicitly set for it automatically
inherits the fillDefault value of its containing group. The following example
illustrates this inheritance with a master <par> group that contains three other
<par> groups as its elements:
337

RealNetworks Production Guide
<par id=”master_group” fillDefault=“freeze”>
 <par id=”group_X”>
 ...clips in group_X...
 </par>
 <par id=”group_Y” fillDefault=“inherit”>
 ...clips in group_Y...
 </par>
 <par id=”group_Z” fillDefault=“remove”>
 ...clips in group_Z...
 </par>
</par>

The following fill actions occur in this set of nested groups:

• The fillDefault=“freeze” value for master_group sets the group’s fill value to
freeze, passing this value to all group elements.

• group_X does not include a fillDefault attribute, so it receives a fill=“freeze”
value from the <par> tag.

• The fillDefault=“inherit” attribute in group_Y makes this group receive the
freeze value from the master group. In other words, fillDefault=“inherit” is
the default value used with a group when its containing group has a
fillDefault attribute. Setting fillDefault=“inherit” explicitly has the same
effect as leaving fillDefault out of the tag altogether.

• group_Z includes a fill=“remove” attribute, which overrides the
fillDefault=“freeze” value it receives from the master group. This group
uses the freeze value, passing it to all the elements it contains.
338

C H A P T E R
14

 Chapter 14: ADVANCED TIMING
Once you have mastered the basic timing attributes described in
Chapter 13, you are ready to tackle SMIL’s advanced timing features.
Using these features, you can develop interactive presentations that
play clips when viewers click icons, for example. You can also use
advanced timing to create effects similar to those found in Web
pages, such as starting a SMIL animation when the viewer moves the
screen pointer over an image.

Tip: Be sure to familiarize yourself with “Conventions Used in
this Guide” on page 12. That section lists the typographical
conventions used in this chapter to explain event timing
syntax.

Understanding Advanced Timing
Chapter 13 explains the basic timing attributes: begin, end, and dur. Although
this chapter introduces some new timing attributes, it primarily shows you
how to expand the power of the begin and end attributes through complex
timing values. This chapter describes many different ways to start or stop an
element besides using basic timing attributes such as begin=“5s”.

Advanced Timing Syntax

The key to advanced SMIL timing is the event. Although not always the case,
an advanced timing command typically starts or stops a SMIL element (or
multiple SMIL elements) when an event occurs. So you generally have two
elements that you work with: the element that triggers the event, and the
element (or elements) that the triggered event starts or stops. For the element
that provides the event trigger, you must define an ID:

<element_tag1 id=”ID” .../>
339

RealNetworks Production Guide
In the triggered element’s tag, you create a begin or end value that refers to the
first element’s ID, specifies the triggering event, and, optionally, adds a timing
offset:

<element_tag2 begin|end=”ID.event[+|-time_value]” .../>

To make these abstract examples more concrete, suppose that your triggering
element is a video clip:

<video src=“video1.rm” id=”intro” region=”video_region”/>

Your triggered element might be a graphic image that begins 10 seconds after
the video starts:

In simple cases, advanced timing commands may not be needed. If the two
preceding clips were in the same <par> group, for example, you could achieve
the desired 10-second delay with simple timing commands:

<par>
 <video src=“video1.rm” id=”intro” region=”video_region”/>

</par>

The advanced timing commands let you tie elements together when they are
not in the same group, however. As well, the advanced timing commands let
you start or stop clips on many kinds of events, such as mouseclicks.

Event Types

Events that can start or stop an element fall into two categories:

• scheduled events

RealPlayer can determine that a scheduled event will happen before the
event occurs. The end of a certain clip’s playback is a scheduled event, for
example, because RealPlayer can determine when the clip will stop based
on the clip’s internal timeline and the presence of SMIL timing attributes.

• interactive events

Interactive events let you base SMIL actions on user input. But unlike a
scheduled event, an interactive event such as a mouseclick cannot be
known before it occurs. Some interactive events mirror scheduled events,
too. The end of a clip’s playback can trigger an interactive or a scheduled
event, for instance.
340

CHAPTER 14: Advanced Timing
The following table summarizes the event values you can use with the begin
and end attributes. Most event values require an ID value that identifies the
element that triggers the event.

Positive Offset Times

Most of the begin and end attribute values described in this chapter can take a
positive offset timing value, which adds a delay between an event and the
action that the event triggers. For example, a begin attribute might have the
following syntax, which sets the element to start at five seconds after the event
(left unspecified here) occurs:

begin=”ID.event+5s”

begin and end Attribute Event Values

Value Event Type Event Trigger Reference

accesskey(key) interactive keypress page 351

ID.activateEvent interactive mouseclick page 348

ID.begin scheduled beginning of element page 344

ID.beginEvent interactive beginning of element page 344

ID.end scheduled end of element page 344

ID.endEvent interactive end of element page 344

ID.focusInEvent interactive keyboard focus on element page 351

ID.focusOutEvent interactive keyboard focus off element page 351

ID.inBoundsEvent interactive pointer moving over element page 348

ID.marker(name) scheduled marker reached for element page 354

ID.outOfBoundsEvent interactive pointer moving off element page 348

ID.repeat(integer) scheduled specific iteration of element page 346

ID.repeatEvent interactive each iteration of element page 346

ID.topLayoutCloseEvent interactive
or scheduled

secondary media playback
window closing

page 353

ID.topLayoutOpenEvent interactive
or scheduled

secondary media playback
window opening

page 353

ID.wallclock(time) scheduled external clock value reached page 354
341

RealNetworks Production Guide
Interactive Events with Positive Offset Times

A positive offset is useful when starting a clip based on an interactive event.
Because it cannot anticipate interactive events, RealPlayer does not request
clips from the server until the interactive event occurs. If you do not add a
positive offset, RealPlayer may need to pause the presentation while it requests
and buffers the clip’s preroll. An offset such as +15s, on the other hand,
enables RealPlayer to request the clip when the event occurs, then buffer the
clip for up to 15 seconds before playing it.

Tip: Instead of using a timing offset value, you can use
<prefetch/> to request a clip’s preroll in advance. For more
information, see Chapter 19.

How Much of a Positive Offset Do You Need?

If you plan to start a clip on an interactive event, open the clip in RealPlayer,
and use File>Clip Properties>Clip Source to display the buffering information.
You’ll also need to add a few seconds for RealPlayer to request the clip from
the server, and to begin receiving the streamed data. If a clip’s preroll is 10
seconds, for example, you may want to use positive offset of 15 seconds to
ensure that the clip’s preroll has streamed to RealPlayer by the time the clip
begins to play.

Note: Static clips such as images do not have a preroll.
RealPlayer must receive all the clip data before playing the clip.
The time required to display the clip is the clip size divided by
the available streaming bandwidth.

Interactive Events that Do Not Require Positive Offsets

A positive offset value isn’t necessary when starting or stopping elements on
interactive events if those elements do not need to be streamed from a server.
For example, you can use an interactive event such as a mouseclick to trigger a
SMIL animation that shrinks a clip already received by RealPlayer. Because the
SMIL animation is defined within the SMIL file, RealPlayer has all the data it
needs to start the animation when the event occurs.

Scheduled Events with Positive Offset Times

When you start clips on scheduled events, a positive offset time is generally
not required to keep the presentation flowing smoothly. RealPlayer can
anticipate scheduled events and request a new clip’s preroll far enough in
advance to prevent presentation rebuffering. You may want to use positive
342

CHAPTER 14: Advanced Timing
offset times with scheduled events to manage the presentation timeline,
though. You might want to start a clip five seconds after another clip repeats
for the second time, for example. You can do that easily by adding +5s to the
clip’s begin time.

Negative Offset Times

SMIL elements within a <par> or <excl> group (but not a <seq> group) can use
negative timing offsets with advanced begin and end values. You can also use a
negative offset value with an event, as shown in the following example:

begin=”ID.event-5s”

Simple Negative Offset Times

You can use negative timing offsets in basic begin and end attributes, as well as
with advanced timing commands. In the following example, the video is set to
begin one minute before the group becomes active:

<par>
 <textstream src=”credits.rt” id=”credits” region=”credits_region”/>
 <video src=“video1.rm” region=”video_region” begin=”-1min”/>
</par>

Although the negative offset time in the preceding example is valid, a clip
never plays before the group that contains it becomes active. This is because
all timing attributes are relative to the group that contains the timed element.
Instead of making the video clip play one minute before the parallel group
becomes active, the negative offset shown above functions like clipBegin. This
means that the video starts playing at its one-minute mark once the group
becomes active.

For More Information: The clipBegin attribute is described in
“Setting Internal Clip Begin and End Times” on page 318.

Interactive Events with Negative Offset Times

Because RealPlayer cannot anticipate an interactive event, there is no way to
use a negative offset time to make a clip start or stop before an interactive
event happens. If you use a negative offset to start a clip 20 seconds before an
interactive event occurs, the clip begins when the event occurs, yet appears to
have played for 20 seconds already. In other words, the clip acts as if
clipBegin=“20s” were included in its source tag.
343

RealNetworks Production Guide
Scheduled Events with Negative Offset Times

Negative offset values are most useful with scheduled events because
RealPlayer can determine when scheduled events will occur. RealPlayer can
determine when a clip is scheduled to end, for instance. You can therefore use
a negative offset time to end a clip ten seconds before another clip’s scheduled
end time, for example.

Multiple Timing Values

For any SMIL element that uses begin or end attributes, you can define any
number of timing values by separating the values with semicolons:

“time1; time2; time3;...”

In the following example, the clip begins when the first of two possible events
occurs: either one minute elapses after the clip’s group becomes active, or
event1 occurs. The clip ends either two minutes after the group starts, or when
event2 occurs:

<ref src=”...” begin=“1min; event1” end=“2min; event2”/>

Tips for Specifying Multiple Time Values

• The order that you list time values does not matter. The time value listed
third can occur before the time value listed second or first, for example.

• The entire value string must be enclosed in double quotation marks.

• You can include spaces before or after a semicolon that separates time
values, but spaces are not necessary.

• Do not add a semicolon after the last value.

• The restart attribute can prevent a clip or group from restarting due to
multiple begin values. See “Controlling Whether an Element Restarts” on
page 354 for more information.

Defining an Element Start or Stop Event
The following four event values work with either the begin or the end attribute,
letting you start or stop an element when another element begins or ends:
344

CHAPTER 14: Advanced Timing
• ID.begin[+|-time_value]

This scheduled event occurs when the element with the given ID begins,
plus or minus any offset time. If the element repeats, this event does not
occur at the start of any repeated cycles.

• ID.beginEvent[+|-time_value]

This interactive event occurs when the element with the given ID begins,
plus or minus any offset time. If the element repeats, this event occurs
only on the first iteration.

• ID.end[+|-time_value]

This scheduled event occurs when the element with the given ID ends,
plus or minus any offset time. If the element repeats, this event occurs at
the end of all repeated cycles. This event does not occur if, for example, a
user action stops the element before its scheduled end time.

• ID.endEvent[+|-time_value]

This interactive event occurs when the element with the given ID ends,
plus or minus any offset time. If the element repeats, this event occurs at
the end of all repeated cycles. This event will not occur if the viewer stops
the element by clicking the RealPlayer Stop button.

Sample Values

The following are samples of begin and end values that start or stop an event
relative to an element with a certain ID value:

Example

As an example of using a begin event, suppose you want to start a clip two
seconds after another clip begins. You first add an ID to the element that
provides the basis for starting or stopping the second element:

begin=“ID.end” Start the element when the element with the given ID
is scheduled to end.

end=“ID.begin-5s” Stop the element five seconds before the element with
the given ID is scheduled to begin.

begin=“ID.beginEvent+5s” Start the element five seconds after the element with
the given ID actually begins.

end=“ID.endEvent” Stop the element when the element with the given ID
actually ends.
345

RealNetworks Production Guide
<video src=“video1.rm” id=”intro” region=”video_region”/>

Next, you define the begin or end time for the second element, using the ID of
the first element:

Keep in mind that SMIL timing values can affect when your second element
begins. Suppose that the video in the preceding example has an internal
timeline of two minutes, but you specify a three-minute duration as shown
here:

<video src=“video1.rm” id=”intro” region=”video_region” dur=”3min”/>

If the second element uses begin=“intro.end” or begin=“intro.endEvent”, for
example, it will start to play when the video’s dur time expires, which is one
minute after the video displays its last frame.

Defining a Repeat Event
Two event timing values for the begin and end attributes let you start or stop a
clip or group when another element repeats. You might target a specific
iteration, such as the third time the element repeats. Or, you can restart the
clip or group on each of the element’s repeating cycles:

• ID.repeat(n)[+|-time_value]

This scheduled event occurs when the element with the given ID starts its
specified repeating cycle, plus or minus any offset time. For example,
ID.repeat(1) specifies the first iteration after the element has already
played once.

• ID.repeatEvent[+|-time_value]

This interactive event occurs when the element with the given ID starts its
second, and any subsequent, iterations. Note that if an element repeats
four times, for example, ID.beginEvent occurs when the element first plays,
and an ID.repeatEvent event occurs at the start of each of the subsequent
three iterations.

The repeatEvent and repeat(n) events typically occur when an element uses an
attribute such as repeatDur and repeatCount, which are described in “Repeating
an Element” on page 325. They do not occur on these conditions:

• The element repeats because it has multiple begin times, as described in
“Multiple Timing Values” on page 344.
346

CHAPTER 14: Advanced Timing
• A repeatDur or repeatCount attribute causes a group that contains the
element to repeat. In this case, the repeat events occur for the group, but
not the individual elements that the group contains.

Sample Values

The following are samples of begin and end values that start or stop an element
relative to the repetitions of another element:

Example

To use a repeat timing value, you first add an ID to the clip that will provide
the basis for starting or stopping the second clip. This clip must also have a
repeatCount or repeatDur attribute that causes it to repeat. In the following
example, the video clip repeats three times:

<video src=“video1.rm” id=”main” repeatCount=”3” region=”video_region”/>

Next, you define the begin or end time for the second clip, using the ID of the
first clip. In the following example, the image clip begins when the video clip
with the ID of main starts its second repetition (that is, when it starts to play
for the third time):

For More Information: For details on the repeatCount and
repeatDur attributes, see “Repeating an Element” on page 325.

Note: If an element repeats and has a negative timing offset,
only the first cycle shows the effect of a clipBegin. All
subsequent cycles play for their full duration.

begin=“ID.repeat(3)” Start the element when the element with the given ID
begins its third repetition (that is, when it starts to play
for the fourth time).

end=“ID.repeat(2)-5s” Stop the element five seconds before the element with
the given ID begins its second repetition.

begin=“ID.repeatEvent+10s” Start the element ten seconds after the second and each
subsequent time the element with the given ID repeats.
347

RealNetworks Production Guide
Defining a Mouse Event
Starting or stopping a clip when a viewer clicks another clip is a common
means of adding interactivity to a streaming presentation. You can also start
or stop an element such as an animation when the viewer moves the screen
pointer on of off a clip. The following are the mouse-related event values that
you can use with a begin or end attribute:

• ID.activateEvent[+|-time_value]

This interactive event occurs when the viewer clicks on the clip with the
specified ID. The target ID must be that of a clip, not a group or a region.
A “click” means a single press and release of the screen pointing device,
typically the mouse. SMIL does not provide separate events for the
individual press (“mousedown”) and release (“mouseup”) actions.

Note: The clip will not register the click if the clip is rendered
more than 50 percent transparent with a value from 0 to 50 for
rn:mediaOpacity. See “Adding Transparency to All Opaque
Colors” on page 221 for more information on this attribute.

• ID.inBoundsEvent[+|-time_value]

This interactive event occurs when the viewer moves the screen pointer
over the clip. The “in bounds” area is the part of the clip that displays in
the region. Portions of the clip cut off at the region boundaries are not
affected. The event occurs even if the clip has finished playing and appears
frozen onscreen. The target ID must be that of a clip, not a group or a
region.

• ID.outOfBoundsEvent[+|-time_value]

This interactive event occurs when the viewer moves the screen pointer off
of the clip’s “in bounds” area. The event occurs even if the clip has
finished playing and appears frozen onscreen. The target ID must be that
of a clip, not a group or a region.

The inBoundsEvent and outOfBoundsEvent values can occur for multiple clips
simultaneously if clips are stacked on top of each other. The z-index value of
the clips does not matter, and an event can still occur even if the clip is
completely obscured by another clip.

For More Information: For details on z-index, see “Stacking
Regions That Overlap” on page 290.
348

CHAPTER 14: Advanced Timing
Sample Values

The following are samples of begin and end values that start or stop an element
relative to a mouse event:

Examples

The following sections provide some examples of the many uses of interactive
timing available through activateEvent, inBoundsEvent, and outOfBoundsEvent.

Starting a Clip when Another Clip is Clicked

Suppose that you want to start a video when an image button is clicked. You
first add an ID to the clip source tag of the image:

Next, you define the begin and end times for the video, using activateEvent and
the image clip’s ID:

<video src=”video1.rm” region=”video_region” begin=”button.activateEvent”/>

Although not always necessary, the clip that is activated (the video clip in the
example above) typically resides in an exclusive group, a group in which only
one element at a time can play. For more on these groups, see “Creating an
Exclusive Group” on page 261.

Tip: You can use activateEvent with the ID of a SMIL <area/>
tag to start or end an element when the hyperlink is activated.
This allows a link simultaneously to open an HTML page and
play a clip, for example. For more on hypertext links, see
Chapter 15.

Changing a Background Color on a Mouseover

Using SMIL’s advanced timing attributes, you can replicate rollover effects
created in HTML pages with Javascript. In the following example, the image
has a transparent background and displays in front of a white background.

begin=“ID.activateEvent” Start the element when the clip with the given ID is
clicked.

begin=“ID.inBoundsEvent” Start the element when the cursor moves over the
clip with the given ID.

end=“ID.outOfBoundsEvent+1s” Stop the element one second after the cursor
moves off the clip with the given ID.
349

RealNetworks Production Guide
The <set/> tag changes the region’s background color to red when the screen
pointer moves over the image, and then change the color back to white when
the pointer moves off the image:

 <set targetElement="image_region" attributeName="backgroundColor" to="red"
 begin="image1.inBoundsEvent" end="image1.outOfBoundsEvent"/>

For More Information: See Chapter 17 for information on SMIL
animations. The section “Setting an Attribute Value” on page
438 explains the <set/> tags.

Changing a Clip on a Mouseover

By animating a region’s z-index value, you can bring the region and the clip it
contains forward on a mouseover. Suppose that you define regions that are
the same size, but the second region has a higher z-index value that places it in
front of the first region:

<region id="image_region1" fit="fill" z-index="1"/>
<region id="image_region2" fit="fill" z-index="2"/>

With this layout, you can hide a clip in image_region1 and display a clip in
image_region2. Using a SMIL animation tag along with advanced timing
commands, you can move the hidden clip forward when the screen pointer
moves over the visible clip, then hide the clip again when the screen pointer
moves off it:

<par>

 <set targetElement="image_region1" attributeName="z-index" to="3"
 begin="image2.inBoundsEvent" end="image1.outOfBoundsEvent"/>
</par>

There are several points to note about the preceding example:

• The SMIL animation plays in parallel with the two image clips, and
remains active as long as the parallel group is active. Hence, timing
attributes for the image clips or parallel group determine how long the
animation stays active.

• The <set/> tag increases the hidden region’s z-index value to place it in
front of the displayed region on the mouseover, resetting the value when
the screen pointer moves off the region. The begin and end times are tied
350

CHAPTER 14: Advanced Timing
to the clip that is in front at the time, because only the foremost clip
registers a mouseover event.

• Although this sample animates a region’s z-index value, the animation
trigger is a mouse event on a clip. Regions do not register mouse events.
Only clips can do this.

For More Information: See Chapter 17 for information on SMIL
animations. The section “Stacking Regions That Overlap” on
page 290 explains z-index attributes.

Defining a Keyboard Event
In addition to mouse events, you can use keyboard events to start or stop
elements. A keyboard event can occur when a viewer presses a key, or it can
occur when a clip gains or loses the keyboard focus. When a clip has the
keyboard focus, it captures all subsequent keystrokes. When a viewer clicks a
form created in Flash, for example, the Flash form receives the focus. The
following are begin or end event values associated with keyboard activity:

• accesskey(key)[+|-time_value]

This interactive event occurs when the viewer presses the designated
keyboard key. The key designation is case-sensitive. This value can be used
along with activateEvent to provide multiple ways to start an element,
either by mouseclick or keystroke.

• ID.focusInEvent[+|-time_value]

This interactive event occurs when the clip with the designated ID receives
the keyboard focus and captures subsequent keystrokes. The focus
typically occurs when the viewer clicks the clip or tabs into it. The target
ID must be that of a clip, not a group or a region.

• ID.focusOutEvent[+|-time_value]

This interactive event occurs when the clip with the designated ID loses
the keyboard focus. This typically occurs when the viewer clicks or tabs
out of the clip. The target ID must be that of a clip, not a group or a
region.
351

RealNetworks Production Guide
Sample Values

The following are samples of begin and end values that start or stop an element
relative to a keyboard event:

Example

In the following example, the video starts playing when the keyboard letter “g”
is pressed. It stops playing when the letter “h” is pressed:

<video src=”video1.rm” region=”video_region” begin=”accesskey(g)”
end=”accesskey(h)”/>

Tips for Defining Keyboard Events

• The access key value is case-sensitive, so the viewer cannot press g
(lowercase “g”) to activate the event if you specify an uppercase “G” with
accesskey(G), for example. You can specify both the lowercase and
uppercase versions of the same key, though, to ensure that letter case does
not matter.

• Access keys can be letters or numbers, but not function keys or command
keys such as Alt, Esc, or F5.

• Mention the access key in a longdesc attribute in the clip source tag. See
“Using a Long Description” on page 244 for more information.

• Your presentation should indicate which access keys the viewer can use.
You can do this with RealText, which is described in Chapter 6. You can
also display this information in the related info pane, as described in
“Opening HTML Pages in the Related Info Pane” on page 375.

• If the same access key is encoded into a clip to perform some function, the
SMIL access key overrides the encoded key’s functionality.

• You can also define access keys to open hyperlinks as described in
“Opening a Link on a Keystroke” on page 370. To avoid conf licts, do not
define the same key for an event and a hyperlink.

begin=“accesskey(g)” Start the element when the keyboard letter “g” is
pressed.

end=“ID.focusOutEvent+2s” Stop the element two seconds after the clip with
the given ID loses the keyboard focus.
352

CHAPTER 14: Advanced Timing
• Unlike the inBoundsEvent and outOfBoundsEvent values, which can occur for
multiple clips simultaneously, only one clip at a time can have the
keyboard focus at a time. Therefore, only one focusInEvent or focusOutEvent
can occur at a time.

Defining a Secondary Window Event
The section “Creating Secondary Media Playback Windows” on page 279
explains how to create a layout in which a secondary media playback window
pops up from the main media playback pane. The following values for the
begin and end attributes allow you to start or stop an element when a
secondary media playback window opens or closes:

• ID.topLayoutOpenEvent[+|-time_value]

This event occurs when the secondary media playback window with the
designated ID opens. The event is scheduled if the <topLayout> tag for the
secondary media playback window uses open=“onStart”. If the tag uses
open=“whenActive”, the window event is scheduled if the element that plays
in the window has a scheduled begin time.

The window event is interactive, though, if the element begins because of
another interactive event. If clicking a clip in the main media playback
pane begins a clip that launches and plays in the secondary media
playback window, for example, topLayoutOpenEvent is interactive.

• ID.topLayoutCloseEvent[+|-time_value]

This event occurs when the window with the designated ID closes. The
event is interactive if the <topLayout> tag for the secondary media playback
window uses close=“onRequest” . If the tag uses close=“whenNotActive” , the
window event is scheduled if the element that plays in the window has a
scheduled end time.

The window event is interactive, though, if the element ends because of
another interactive event. If clicking a clip in the main media playback
pane stops the clip or clips playing in the secondary media playback
window, for example, topLayoutCloseEvent is interactive.
353

RealNetworks Production Guide
Sample Values

The following are samples of begin and end values that start or stop an element
relative to a secondary media playback window event:

Example

The following example defines a secondary media playback window that
opens when the first clip displays in it, and closes when all clips assigned to it
finish playing:

<topLayout width=”180” height=”120” id=”popup1” open=“whenActive”
close=“whenNotActive”>

The following clip then starts three seconds after the window closes:

<video src=”video1.rm” region=”vid” begin=”popup1.topLayoutCloseEvent+3s”/>

Using Media Markers
This section to be added.

Coordinating Clips to an External Clock
This section to be added.

Controlling Whether an Element Restarts
The restart attribute governs whether an element can play more than once. A
clip might have multiple begin times that specify when it plays, for example, or
start on an interactive event such as a mouse click. The restart attribute can
prevent an element from restarting, or place restrictions on the restart. It does

begin=“ID.topLayoutOpenEvent” Start the element when the secondary media
playback window opens.

end=“ID.topLayoutCloseEvent+2s” Stop the element two seconds after the secondary
media playback window closes.
354

CHAPTER 14: Advanced Timing
not affect repeating cycles set with a repeatCount or repeatDur attribute, though.
The following table summarizes the restart values.

In the following example, a video clip starts when a button is clicked, as
described in “Defining a Mouse Event” on page 348. It uses the whenNotActive
value to allow it to restart after it finishes playing. Nothing happens if the
viewer clicks the activation button while the video plays. The viewer must wait
for the video to stop, then click the button to restart the video:

<video src=”video1.rm” region=”video_region” begin=”button.activateEvent”
restart=”whenNotActive”/>

Tip: Although the restart attribute is most commonly used
with clips, you can also use it in group tags and other elements,
such as SMIL animations. Keep in mind, though, that an
element can restart only while its containing group is active.

Setting a Default Restart Value

You can use the restartDefault attribute in a group tag to set a restart value for
the group and all of the elements it contains. All elements within the group

restart Attribute Values

Value Function

always Allows the element to restart at any time, even while playing. This is
the effective value that is used if the element has no restart value,
and no restartDefault values are specified in any groups of which
the element is a member.

default Sets the restart value to that specified by restartDefault. This is the
default value that is used if no restart value is specified, but a
containing group has a restartDefault value.

never Prevents the element from restarting after it completes its first
playback.

whenNotActive Allows the element to restart only after it has completed playing.
The element can then restart any number of times. The restart
occurs only after the element plays to completion, its dur or end
time is reached, or it finishes all of its specified repeat cycles.
355

RealNetworks Production Guide
receive the default restart value unless they have another restart value explicitly
set. The following table lists the possible restartDefault values.

The following example shows an exclusive group of video clips in which the
first two clips receive the restartDefault value of whenNotActive. The last clip,
however, overrides that value with its own restart value:

<excl restartDefault=”whenNotActive”>
 <video src=”video1.rm” begin=”button1.activateEvent” .../>
 <video src=”video2.rm” begin=”button2.activateEvent” .../>
 <video src=”video3.rm” begin=”button3.activateEvent” restart=”never” .../>
</excl>

Nested Group Interactions with Restart Values

If several levels of nested groups use restart and restartDefault, it’s important to
understand how the groups and their elements interact. Because elements
inherit a restartDefault value by default, the interactions can be difficult to
grasp unless you look at all levels of the nested groups. Consider the following
abstract example:

restartDefault Attribute Values

Value Function

always Allows elements within the group to restart at any time, even while
playing.

inherit Sets the restart value for elements in the group to the
restartDefault value of the group’s containing group. This is the
default value, meaning that a group without a restartDefault value
inherits the restartDefault value from its containing group.

never Prevents elements within the group from restarting after they
complete their first playback.

whenNotActive Allows group elements to restart any number of times, but only
after they have completed playing. Restart attempts are recognized
only after the elements have played to completion.
356

CHAPTER 14: Advanced Timing
<par id=”master_group” restartDefault=“whenNotActive”>
 <par id=”group_X” restartDefault=”inherit”>
 <ref id=”clip_A” .../>
 <ref id=”clip_B” restart=”always” .../>
 </par>
 <par id=”group_Y” restart=”always”>
 <ref id=”clip_C” .../>
 <ref id=”clip_D” .../>
 </par>
 <par id=”group_Z” restartDefault=”always”>
 <ref id=”clip_E” .../>
 <ref id=”clip_F” restart=”whenNotActive” .../>
 </par>
</par>

The master group sets a restartDefault value of whenNotActive. The elements
within this master group have the following restart values:

• group_X set to whenNotActive

group_X inherits the default value of whenNotActive from master_group, and
passes that value to the clips it contains, one of which overrides the value:

• clip_A set to whenNotActive

• clip_B set to always

• group_Y set to always

group_Y sets its own behavior to always. However, it inherits the default
value of whenNotActive from master_group, and passes that value to both
clips it contains:

• clip_C set to whenNotActive

• clip_D set to whenNotActive

• group_Z set to whenNotActive

group_Z inherits the default value of whenNotActive from master_group.
However, it changes the default value for the elements it contains to
always. One of the clips overrides that value:

• clip_E set to always

• clip_F set to whenNotActive
357

RealNetworks Production Guide
358

C H A P T E R
15

 Chapter 15: HYPERLINKS
A SMIL file can define links to other media. A video might link to a
second video, for example, or to an HTML page that opens in a
browsing window. You can even define areas as hot spots with links
that vary over time. The bottom corner of a video can link to a
different URL every ten seconds, for instance. This chapter explains
how to create hyperlinks that open HTML pages, as well as new
streaming media presentations.

Understanding Hyperlinks
SMIL provides two hyperlink tags, both found in HTML. So if you are familiar
with HTML linking, you’ll pick up SMIL linking quickly. The SMIL <a> tag is
the simpler means of creating links, but the <area/> tag is more powerful. The
<area/> tag includes all of the features of <a>, and adds additional ones, such
as the ability to define multiple links for each clip, and to create hot spots
(image maps) and timed links. Using the <area/> tag for all hyperlinks is
recommended, but the <a> tag is also available for basic linking functions.

For More Information: The two sections “Creating a Simple
Link” on page 362, and “Using the <area/> Tag” on page 362,
provide the basic instructions for using the two link tags.

Links to HTML Pages

Your SMIL file can link to HTML pages that open in a RealPlayer
environment, or the viewer’s default Web browser. As explained in “The Three-
Pane Environment” on page 30, RealPlayer offers three types of HTML
windows: a related info pane, a media browser pane, and any number of
secondary browser windows that pop up above the three-pane environment.
359

RealNetworks Production Guide
For More Information: The section “Selecting a Browsing
Window” on page 374 explains the attributes that target the
RealPlayer panes.

Links to Streaming Media

A hyperlink can also open in the RealPlayer media playback pane, targeting an
existing SMIL region, replacing the current presentation, or popping up a new
media playback window. Note, though, that SMIL offers features that you can
use in place of hyperlinking. For example, you can pop up a new window
during the course of a presentation by using SMIL layout tags. With advanced
timing, you can start or end a clip when the viewer clicks another clip. Neither
of these features requires hyperlinks. So before you define hyperlinks, be sure
that you understand the possibilities offered by SMIL.

For More Information: The section “Linking to Streaming
Media” on page 379 lists the attributes and values specific to
streaming media links.

Linked Pop-Up Windows vs. Secondary Pop-Up Windows

A hyperlink can pop up a new RealPlayer media playback window when
clicked, You can also pop up a window with a <topLayout> tag as described in
“Secondary Media Playback Windows” on page 271. Defining secondary
media playback windows is appropriate when you want the new window to
pop up at a predefined point in your presentation. Creating a hyperlink to a
new RealPlayer media playback window is preferable when you want the new
window to pop up based on viewer interaction, and the media you display in
the window is not part of your main SMIL presentation.

Hyperlinks vs. Exclusive Groups

If you plan to create an interactive application, you need to consider carefully
whether to provide interactivity through hyperlinks, exclusive groups, or both.
Suppose that you plan to create a presentation that offers three different
video clips that the viewer can select by clicking three buttons. You can author
your SMIL presentation in different ways:

• Link the video clips to the buttons with hyperlinks.

Using hyperlinks, you can link each button to a separate video. In this
case, your main SMIL file does not contain <video/> tags that refer to the
video clips. Instead, each button uses a hyperlink to play the clip when the
360

CHAPTER 15: Hyperlinks
button is clicked. This method works well when you want to launch each
video in a separate window.

• Place the video clips in an exclusive group, and use advanced timing
commands to play each video when the viewer clicks a button.

Within an exclusive group, you include a <video/> tag for each video clip.
You then use advanced SMIL timing attributes to play each video clip
when the viewer clicks one of the buttons. This method is preferable if you
want to display all buttons and clips in a single media playback window,
or you want to include SMIL timing and layout attributes in each <video/>
clip source tag.

For More Information: See “Creating an Exclusive Group” on
page 261. Chapter 14 explains advanced timing features.

Methods of Activating a Link

The screen pointer turns into a hand icon when the viewer moves the pointer
over an active link. Typically, the viewer opens the link by clicking it. SMIL lets
you define other ways to open a link, too. You might specify a keyboard key
that the viewer can press to open the link, for instance. Links can also open
automatically, letting you display different Web pages as a presentation plays,
for example.

For More Information: See “Defining Basic Hyperlink
Properties” on page 369 for more information about these
features.

General Tips for Creating Hypertext Tags

• Hyperlink tags work only with clip source tags. You cannot make an
entire group into a hyperlink, or turn a SMIL region into an image map.

• Hyperlink tags cannot be nested. You can associate any number of hot
spots or timed links defined through <area/> tags with a single clip source
tag, however.

• Some clips can also define hyperlinks. A RealText clip, for example, can
define hyperlinks for portions of text. When a viewer clicks an area where
a clip link and a SMIL link overlap, the SMIL link is used.
361

RealNetworks Production Guide
• When turning a clip into a hypertext link, include the longdesc attribute in
a clip source tag, using it to describe the hyperlink destination. See “Using
a Long Description” on page 244 for more information.

• Using advanced SMIL timing attributes, you can make a hypertext link
start or stop any element within the SMIL presentation. Clicking the link
might start a clip playing, for example. For more information, see
“Defining a Mouse Event” on page 348.

Creating a Simple Link
The simplest type of link connects an entire source clip to another clip. As in
HTML, you define the link with <a> and tags. But whereas you enclose
text between <a> and in HTML, you enclose a clip source tag between <a>
and in SMIL:

 <video src=”video1.rm” region=”video_region”/>

The preceding example links the source clip video1.rm to the target clip
video2.rm. When the viewer clicks video1.rm as it plays, video2.rm replaces it. In
an <a> tag, the href attribute is required. The URL begins with rtsp:// if the
linked clip streams to RealPlayer from Helix Server, or http:// if the file
downloads from a Web server.

For More Information: For information on link attributes, see
“Defining Basic Hyperlink Properties” on page 369. See either
“Linking to HTML Pages” on page 373 or “Linking to
Streaming Media” on page 379 depending on your intended
link target.

Using the <area/> Tag
The <area/> tag differs from the <a> tag in that you place it within the clip
source tag rather than around it. This means that you must turn unary clip
source tags such as <video/> into binary tags such as <video>...</video>, as
described in “Binary and Unary Tags” on page 199. The <area/> tag typically
ends with a closing slash, but in some cases you need to use an <area>...</area>
tag pair. The following is a basic <area/> tag that links one video clip to a
second video clip:
362

CHAPTER 15: Hyperlinks
<video src=”video1.rm” region=”video_region”>
 <area href=”rtsp://helixserver.example.com/video2.rm”/>
</video>

If the <area/> tag includes no spatial coordinates, the entire clip becomes a
link, making the <area/> tag function just like the <a> tag. A clip source tag
can include any number of <area/> tags. When you define multiple <area/>
links for a single clip, however, you need to do one or both of the following:

• Specify temporal coordinates so that each <area/> link is active at a
different time.

• Define spatial coordinates in each <area/> tag to turn each link into a hot
spot that does not overlap the other hot spots.

Creating a Timed Link

An <area/> tag can include temporal attributes that specify when the link is
active, relative to the start of clip playback. If you do not include temporal
attributes, the link stays active as long as the source clip appears onscreen. To
add timing attributes, use the SMIL begin and end values. You cannot use dur,
clipBegin, or clipEnd, however.

The following example creates two temporal links for the clip video1.rm. The
first link is active for the first 30 seconds of playback. The second link is active
for the next 30 seconds. Because no spatial coordinates are given, the entire
video is a link:

<video src=”video1.rm” region=”video_region”>
 <area href=”http://www.real.com” begin=”0s” end=”30s”.../>
 <area href=”http://www.realnetworks.com” begin=”30s” end=”60s”.../>
</video>

Tip: An active link is one that the viewer can open, whether by
clicking it or pressing the link’s access key. The link does not
open automatically, however, unless you use actuate=“onLoad”.
For more information, see “Opening a URL Automatically” on
page 371.

For More Information: For more on the begin and end attributes,
see “Setting Begin and End Times” on page 316. These
attributes use the SMIL timing values described in “Specifying
Time Values” on page 315. See “Opening Pages on a Mouse
363

RealNetworks Production Guide
Click” on page 389 for an example of hyperlinks that vary over
time.

Defining Hot Spots

To create a hot spot with an <area/> tag, you use the shape attribute to define
the hot spot’s shape, and a coords attribute to define the hot spot’s size and
placement. You define the shape and coords attributes in SMIL just as you do
in HTML 4.0. You can use either pixel measurements or percentages to define
any hot spot. The following example shows two hot spots created for a clip:

<video src=”video1.rm” region=”video_region”>
 <area href=”...” shape=”rect” coords=”20,40,80,120” .../>
 <area href=”...” shape=”circle” coords=”70%,20%,10%” .../>
</video>

How you specify the coordinate values depends on what shape (rectangle,
circle, or polygon) you want, as explained in the following sections. In all hot
spots, the coordinates are measured from the media clip’s upper-left corner
regardless of where you place the clip in a region.

Creating a Rectangular Hot Spot

Use shape=“rect” to create a rectangular hot spot. You then specify four coords
values in pixels or percentages to set the hot spot’s size and placement,
measured from the upper-left corner of the source clip in the following order:

1. distance of the hot spot rectangle’s left edge from the clip’s left edge
(left-x)

2. distance of the hot spot rectangle’s top edge from the clip’s top edge
(top-y)

3. distance of the hot spot rectangle’s right edge from the clip’s left edge
(right-x)

4. distance of the hot spot rectangle’s bottom edge from the clip’s top edge
(bottom-y)

Coordinate values are separated by commas, as shown in the following
example:

<video src=”video1.rm” region=”video_region”>
 <area href=”...” shape=”rect” coords=”20,40,80,120”/>
</video>
364

CHAPTER 15: Hyperlinks
The preceding example uses pixel values to define a hot spot 60 pixels wide (80
pixels minus 20 pixels) and 80 pixels high (120 pixels minus 40 pixels). It
creates a hot spot like that shown in the following illustration.

Rectangular Hot Spot

Tip: Think of the first pair of values as defining the x and y
coordinates of the hot spot’s upper-left corner, and the second
pair of values as defining the x and y coordinates of the hot
spot’s lower-right corner.

Defining a Circular Hot Spot

You can use shape=“circle” to create a circular hot spot. Three coords values
then specify in pixels or percentages the circle’s center placement and radius in
the following order:

1. distance of the hot spot circle’s center from clip’s left edge (center-x)

2. distance of the hot spot circle’s center from the clip’s top edge (center-y)

3. the hot spot circle’s radius

The coordinate values are separated by commas, as shown in the following
example:

<video src=”video1.rm” region=”video_region”>
 <area href=”...” shape=”circle” coords=”100,120,50”/>
</video>

The preceding example uses pixel values to place the circular hot spot’s center
100 pixels in from the clip’s left edge, and 120 pixels down from the clip’s top

120

80

20

40

shape="rect" coords="20,40,80,120"

120

80

20

40
365

RealNetworks Production Guide
edge. The hot spot has a radius of 50 pixels. The following figure illustrates
this example.

Circular Hot Spot

Tip: The last value, which sets the circle’s radius, should not be
more than the smaller of the other two values. If the first two
values are 40 and 20, for example, the third value should not be
more than 20. Otherwise, part of the circle extends beyond the
clip boundaries and is cut off.

Making a Polygonal Hot Spot

Use shape=“poly” to make a polygonal hot spot with any number of sides. You
might create a triangle or an octagon, for example. For every n sides of the
polygon you want to create, you must specify 2n values in the coords attribute.
To create a triangle, for example, you need to specify six coords values. Each
pair of coordinate values indicates the placement of a corner of the polygon in
this order:

1. distance of the polygon corner from the clip’s left edge (corner-x)

2. distance of the polygon corner from the clip’s top edge (corner-y)

The following example defines a triangular hot spot:

<video src=”video1.rm” region=”video_region”>
 <area href=”...” shape=”poly” coords=”40,150,120,30,200,150”/>
</video>

The following figure illustrates the preceding example. The first value pair for
the coords attribute defines the triangle’s lower-left corner. The coords value

50

shape="circle" coords="100,120,50"

505050
366

CHAPTER 15: Hyperlinks
pairs then proceed clockwise, defining the top corner, followed by the lower-
right corner.

Polygonal Hot Spot

Tip: When defining a polygon, you can start with any corner,
specifying the placement of additional corners by going
around the polygon either clockwise or counter-clockwise.

Tips for Defining Hot Spots

• When a clip is a different size than its playback region, a fill, meet, or slice
value for the fit attribute in the <region/> tag may resize the clip. In these
cases, a hot spot defined with percentages scales with the clip, whereas
one defined with pixels does not. If the clip is the same size as the region,
or the region’s fit value is hidden or scroll, the clip does not scale. For more
information, see “Fitting Clips to Regions” on page 303.

• A viewer may resize a presentation manually by, for example, clicking and
dragging a RealPlayer corner. In these cases, hot spots scale with clips
whether you define the hot spots with pixels or percentages. You can
prevent a clip from resizing, though, as explained in “Controlling Resize
Behavior” on page 281.

• You can use whole and decimal values for percentages with the coords
attribute. For example, the values “4%” and “4.5%” are both valid.

• You can mix pixels and percentages in the coords attribute. For example,
the attribute coords=“50,50,100%,100%” places a rectangular hot spot’s left
and top boundaries in and down 50 pixels from the source clip’s upper-

0

15 150

200

40

30

shape="poly" coords="40,150,120,30,200,150"

120120120

151515 150150150

200

40

30
367

RealNetworks Production Guide
left corner, respectively. But the hot spot’s right and bottom boundaries
extend to the source clip’s right and bottom edges, respectively, no matter
the source clip’s size.

• Values such as coords=“30,30,10,10” for a rectangular hot spot are ignored,
and the hot spot will not function. Here, the hot spot’s left side is defined
as being farther to the right than its right side. As well, the top is defined
to be below the bottom.

• A hot spot defined to extend beyond the source clip is cropped at the clip’s
edge. For example, if a rectangular hot spot uses coords=“50,50,300,300”
but the source clip is 200 by 200 pixels, the hot spot’s effective coordinates
are “50,50,200,200”. For this reason, no percentage value can effectively be
more than 100%.

• If multiple hot spots overlap on a clip, the link for the hot spot defined
first in the SMIL file is used when the viewer clicks the overlapping area.

• Many programs, including shareware and freeware, can generate HTML
image maps. You can use one of these programs to define the coordinates
for a hot spot. Simply create an HTML image map over an image that is
the same size as your clip, view the HTML source, and copy the image map
coordinates into your <area/> tag.

• The following table lists sample percentage coordinates that define
rectangular hot spots for a source clip. Each hot spot is a quarter the size
of the source clip.

Sample Percentage Coordinates for a Rectangular Hot Spot

Hot Spot Rectangle Position Attributes

upper-left quadrant shape=”rect” coords=”0,0,50%,50%”

upper-right quadrant shape=”rect” coords=”50%,0,100%,50%”

lower-left quadrant shape=”rect” coords=”0,50%,50%,100%”

lower-right quadrant shape=”rect” coords=”50%,50%,100%,100%”

center shape=”rect” coords=”25%,25%,75%,75%”
368

CHAPTER 15: Hyperlinks
Defining Basic Hyperlink Properties
The hyperlink attributes summarized in the following table affect link
properties in <a> and <area/> tags whether the link opens an HTML page or a
media presentation.

Tip: The accesskey, alt, and tabindex attributes are defined the
same in SMIL 2.0 as they are in HTML 4.0.

Specifying the Link URL

As with an HTML hyperlink, the SMIL href attribute specifies the URL to
open. This should be an HTTP URL for items opened in a browser window,
whether those items reside on a Web server or Helix Server. SMIL files or clips
opened in RealPlayer should generally have an RTSP URL if they reside on
Helix Server. They must have an HTTP URL if they reside on a Web server,
however. See the following sections for more information:

• For information on URL formats, see “Writing Clip Source URLs” on page
213. Although this section discusses URLs for clip source tags such as
<video/>, the basic URL format is the same for hyperlinks.

• To display a link target in a Web browser, follow the instructions in
“Linking to HTML Pages” on page 373.

• When opening a streaming media clip or SMIL file, use the additional
attributes described in “Linking to Streaming Media” on page 379.

Basic Hyperlink Attributes

Attribute Value Function Reference

accesskey key_name Defines a key stroke that opens the link. page 370

actuate onLoad|
onRequest

Opens the link automatically or on request. page 371

alt text Supplies alternate text. page 372

href URL Provides the link URL. page 369

nohref (none) Indicates no URL (<area/> tag only). page 370

tabindex integer Sets a tabbing order for links. page 372
369

RealNetworks Production Guide
Leaving Out a URL Reference for Hot Spots

Note: The nohref attribute is not currently functional in
RealPlayer.

The nohref attribute, which can be used only in <area/> tags, indicates that the
hot spot has no URL associated with it. You can use nohref with interactive
timing commands to start another clip when the hot spot is clicked, for
example, without activating a hyperlink to an external file. The nohref
attribute does not take a value.

Opening a Link on a Keystroke

The accesskey attribute defines a keyboard key that the viewer can press to
open the link. The viewer presses just the defined key, and does not need to
press a helper key such as Alt to open the link. You can define any number of
access keys for a link. In the following example, the viewer could press the
keyboard letter m to open the link:

<area href=”http://www.example.com” accesskey=”m” .../>

Note: The SMIL playback area does not receive the keyboard
focus by default. Therefore, the viewer must first click the
SMIL playback area before pressing an access key.

Tips for Defining Access Keys

• The access key value is case-sensitive, so the viewer cannot press m
(lowercase “m”) to open the link if you specify an uppercase “M” with
accesskey=“M”, for example. You can specify both the lowercase and
uppercase versions of the same key, though, to ensure that letter case does
not matter.

• Access keys can be letters or numbers, but not function keys or command
keys such as Alt, Esc, or F5.

• As long as the clip associated with the link is visible, the viewer can click
the link as well as open it with the access key. You cannot define a link
that is accessible only through an access key. However, you can create the
hyperlink as a very small hot spot, such as a one-pixel rectangle.

• When you make an entire source clip a link, mention the access key in a
longdesc attribute in the clip source tag. See “Using a Long Description”
on page 244 for more information.
370

CHAPTER 15: Hyperlinks
• Your presentation should indicate which access keys the viewer can use.
You can do this with RealText, which is described in Chapter 6. You can
also display this information in the related info pane, as described in
“Opening HTML Pages in the Related Info Pane” on page 375.

• If the same access key is encoded into a clip to perform some function, the
SMIL access key overrides the encoded key’s functionality.

• It is best not to use the same access key when defining multiple links that
are active at the same time. If multiple, active links use the same access
key, the following criteria determine which link opens when the viewer
presses the access key:

• Links for clips not assigned to regions (such as audio clips) override
links for clips assigned to regions.

• When a clip displays in front of other clips because its region has a
higher z-index value, its links override the links associated with the
lower clips. However, if the upper clip uses a value of 1 to 50 for
rn:mediaOpacity, the links for lower clips will open.

For More Information: For more on rn:mediaOpacity, see “Adding
Transparency to All Opaque Colors” on page 221.

• If the z-index stacking order does not determine the link precedence,
the link that becomes active first overrides the other links.

• If links become active at the same time, the link listed first in the
SMIL file overrides the other links.

• You can also define access keys to start or stop elements as described in
“Defining a Keyboard Event” on page 351. To avoid conflicts, do not
define the same key for an event and a hyperlink.

Opening a URL Automatically

The actuate attribute has a default value of onRequest, which makes the link
open only when the viewer clicks the link, or presses the link’s access key. If
you set actuate=“onLoad”, however, the link opens as soon as the link tag
becomes active in the SMIL presentation timeline, without requiring any user
input. For example, the following link opens when the video clip begins to
play:
371

RealNetworks Production Guide
<video src=”video1.rm” region=”video_region”>
 <area href=”http://www.example.com” actuate=”onLoad”.../>
</video>

As described in “Creating a Timed Link” on page 363, you can use a begin
attribute in the <area/> tag to cause the link to become active after its
associated clip starts to play. This lets you open a link at some point after a
clip begins to play.

Tip: A link that uses actuate=”onLoad” is still clickable, meaning
that the viewer can reopen it after it opens automatically. If you
want to prevent this, set a short link duration by using
dur=”1s”, for example, in the <area/> tag.

Displaying Alternate Link Text

A hyperlink can include an alt attribute that uses short, descriptive text as its
value. It is good practice always to include an alt attribute in hyperlinks. When
the viewer moves the screen pointer over the link, the alt text displays in the
status line above the RealPlayer media playback pane, indicating what the link
will open. In the following example, the text “Visit RealNetworks” is used for
the alt value:

<area href=”http://www.realnetworks.com” alt=”Visit RealNetworks” .../>

If the clip that includes the link also has an alt value, the link’s alt value
displays instead of the clip’s. If the link has no alt value, its URL displays in
place of the clip’s alt value. In short, a link always overrides the clip’s alt value.

For More Information: The section “Including an Alternate Clip
Description” on page 244 covers the alt attribute in clip source
tags. See “Coded Characters” on page 239 for information on
including special characters in alt text.

Setting a Tab Index for Multiple Links

When multiple links appear onscreen, the viewer can press Tab to cycle
between the links, then press Enter to open a link. Using the tabindex attribute,
you can specify the tabbing order. This attribute, which has a default value of
0, takes a positive integer as a value. RealPlayer highlights the clip with the
lowest tabindex value first. It highlights the clip with the next higher tabindex
value each time the viewer presses Tab. The following is an example of two
clips playing in parallel, each of which has a hyperlink:
372

CHAPTER 15: Hyperlinks
<par>

 <area href=”...” tabindex=”2” .../>

 <video src=”...” region=”video_region”... >
 <area href=”...” tabindex=”1” .../>
 </video>
</par>

In the preceding example, the link for the video clip has the lower tabindex
value, so RealPlayer highlights it first when the viewer presses Tab. RealPlayer
highlights the image clip next when the viewer presses Tab again.

Tip: If two or more <area/> tags have the same tabindex value,
the tabbing order follows the order in which the clip source
tags appear in the SMIL file. This also occurs if you leave
tabindex out of all <area/> tags.

Linking to HTML Pages
The attributes summarized in the following table allow you to open HTML
pages from your SMIL presentation. You can use these attributes to open a
Web page while a presentation plays, for example. Web page links open by
default in a RealPlayer browsing pane, though you can also open them in the
viewer’s default browser.

Attributes for Opening a Link in a Web Browser

Attribute Value Default Function Reference

rn:contextWindow auto|openAtStart auto Sets when related info
pane opens.

page 376

external false|true false Opens link in a
browser when true.

page 374

height pixels media
height

Sets related info pane
height in <param> tag.

page 376

rn:sendTo _osdefaultbrowser|
_rpbrowser|
_rpcontextwin

(none) Specifies window that
opens the HTML
page.

page 374
page 375

sourceLevel percentage 100% Sets audio level. page 384

sourcePlaystate pause|play|stop pause Changes source state. page 378
 (Table Page 1 of 2)
373

RealNetworks Production Guide
Tip: You can also open an HTML URL through a Ram file.
This is useful for presentations that consist of a single clip, and
do not require the advanced features that SMIL provides. For
instructions on this, see “Opening a URL in an HTML Pane”
on page 514.

Selecting a Browsing Window

For a SMIL hyperlink to open in a Web browser, the external attribute must be
set to true . (The external attribute’s default value is false, however, which opens
the link in the RealPlayer media playback pane.) The link must also use an
HTTP URL that the browser can request. Minimally, a SMIL link for content
played in a Web browser looks like the following example:

<area href=”http://www.example.com” external=”true”/>

Using external=”true” is the only requirement for opening an HTML page in a
Web browser. As described in “Links to HTML Pages” on page 359, however,
RealPlayer offers several browsing panes. The following table lists the
attributes required to open an HTML URL in one of these panes.

target name current
window

Targets window or
frame.

page 377

width pixels 330 Sets related info pane
width in <param> tag.

page 376

Attributes for Opening a Link in a Web Browser (continued)

Attribute Value Default Function Reference

 (Table Page 2 of 2)

Attributes for HTML Page Hyperlinks

Attributes Target Reference

external=”true” A secondary browsing window that
does not attach to the media playback
and related info panes.

page 374

external=”true”
rn:sendTo=“_rpbrowser”

The media browser pane, which can
attach to, or detach from, the media
and related info panes.

page 375

external=”true”
rn:sendTo=“_osdefaultbrowser”

The viewer’s default Web browser. page 375

external=”true”
rn:sendTo=“_rpcontextwin”

The related info pane, which appears to
the right of the media playback pane.

page 375
374

CHAPTER 15: Hyperlinks
Note the following important points about using the rn:sendTo attribute:

• The rn:sendTo attribute works only in SMIL <area/> tags. It does not
function with <a> tags.

• Using the rn:sendTo attribute requires that you declare the following
namespace in the <smil> tag:

xmlns:rn=“http://features.real.com/2001/SMIL20/Extensions”

For More Information: For background on customized
attributes and namespaces, see “Using Customized SMIL
Attributes” on page 201.

Targeting the Media Browser Pane

RealPlayer’s media browser pane can attach to, or detach from, the media
playback and related info panes. This is the recommended pane for displaying
Web pages along with your presentation. To target this pane, declare the
RealNetworks extensions namespace in your <smil> tag as described above,
and use a hyperlink that looks like the following:

<area href=”http://www.example.com” external=”true” rn:sendTo=”_rpbrowser” .../>

Tip: To target this pane from an HTML page displaying in the
related info pane or a secondary browsing window within the
RealPlayer environment, use .

Using the Viewer’s Default Browser

Web page links open in a RealPlayer media browser pane by default. Although
this is preferred means for displaying these pages, you can also open these
links in the viewer’s default Web browser. To do this, declare the RealNetworks
extensions namespace in your <smil> tag as described above, and create a link
that looks like the following:

<area href=”http://www.example.com” external=”true”
rn:sendTo=”_osdefaultbrowser” .../>

Opening HTML Pages in the Related Info Pane

Appearing to the right of the media playback pane, the related info pane can
display HTML pages that supplement your SMIL presentation. It might
display title and copyright information about clips as they play, for example.
Using the SMIL timing features described in Chapter 13 and Chapter 14, as
375

RealNetworks Production Guide
well as the hyperlinking features described in this chapter, you can open a URL
in the related info pane at any time during the presentation.

To open an HTML page in the related info pane, declare the extensions
namespace (xmlns:rn=“http://features.real.com/2001/SMIL20/Extensions”) in
your <smil> tag, and add rn:sendTo=”_rpcontextwin” to the <area/> link tag:

<area href=”http://www.example.com/context.html” external=”true”
rn:sendTo=”_rpcontextwin” sourcePlaystate=”play”/>

Setting the Related Info Pane Size

Through <rn:param/> tags, you can extend an <area/> tag link to include sizing
information for the RealPlayer related info pane. This requires that you turn
your <area/> tag into a binary tag as described in “Binary and Unary Tags” on
page 199. To specify the related info pane width and height in pixels, you then
add <param/> tags to the link, as shown in the following example:

<area href=”...” external=”true” rn:sendTo=”_rpcontextwin” ...>
 <rn:param name=”width” value=”320”/>
 <rn:param name=”height” value=”240”/>
</area>

 Making Room for the Related Info Pane

When the media browser pane is attached, a SMIL presentation that plays
without an HTML page for the related info pane appears centered above the
media browser pane. If an HTML page later opens in the related info pane, the
SMIL presentation jumps to the left. To prevent this effect, which can be
jarring for the viewer, include rn:contextWindow=“openAtStart” in the <root-

layout/> tag (not the <area/> tag):

<root-layout width=”320” height=”240” rn:contextWindow="openAtStart"/>

When you use this attribute, the SMIL presentation appears at the left side of
the top two panes. Any HTML pages then sent to the related info pane appear
at the right side. To prevent height resizing when an HTML page appears,
specify the same height for the related info pane that you use in the <root-

layout/> area. The rn:contextWindow attribute has no visible effect when the
media browser pane is detached.

 Tips for Using the Related Info Pane

• See “The Related Info Pane” on page 34 for basic information about the
size of the related info pane in relation to the other RealPlayer panes.
376

CHAPTER 15: Hyperlinks
• For best results, keep the related info pane approximately the same size as
the media playback pane (specified with the <root-layout/> tag’s height and
width attributes). Be careful that the combined widths of the media
playback pane and related info pane do not make the presentation too
large to display on small computer screens.

• The media playback pane and the related info pane appear side-by-side
with no divider. If the panes are the same height, you can create a uniform
background by setting the same background color in each pane. For the
media playback pane, you set this color with the backgroundColor attribute
of your SMIL presentation’s <root-layout/> tag, as described in “Adding
Background Colors” on page 292.

• To keep the presentation playing as links open in the related info pane,
use sourcePlaystate=”play” and actuate=”onLoad” in the <area/> tag in your
SMIL file.

• A standard hypertext link in an HTML page within a browsing window
cannot open a URL in the related info pane because the related info pane
requires sizing information.

• The related info pane is designed for small HTML pages that supplement
a media presentation. To display large Web pages, open URLs in the media
browser pane. See “Selecting a Browsing Window” on page 374.

Targeting a Frame or Named Window

Note: HTML frame and window targeting is not currently
functional in RealPlayer.

When you use SMIL to open an HTML page, the SMIL target attribute works
much the same as the HTML target attribute. When a hyperlink targets a
RealPlayer secondary browsing window (using just external=”true”) or the
default browser (using rn:sendTo=”_osdefaultbrowser”), the target attribute can
do one of the following:

• open a new, named browsing window

• target an existing, named window

• select a named frame within an existing window

When a link specifies the media browser pane (with rn:sendTo=”_rpbrowser”) or
the related info pane (using rn:sendTo=”_rpcontextwin”), the target attribute can
377

RealNetworks Production Guide
select an existing frame. The following example shows how to open a link in
the frame named rightpane within the media browser pane:

<area href=”http://www.example.com” external=”true”
rn:sendTo=”_rpbrowser” target=”rightpane”.../>

Tip: The HTML values _new and _top are not supported in the
RealPlayer environment. Use actual window names instead.

Controlling the Media Playback State

By default, the SMIL presentation pauses while an HTML page link opens.
The viewer can resume the presentation by clicking the RealPlayer Play button.
RealPlayer typically needs to rebuffer the presentation briefly before
continuing playback. You can also make RealPlayer stop the presentation
completely, or continue playing when the link opens, with a stop or play value,
respectively, for the sourcePlaystate attribute:

<area href=”http://www.example.com” external=”true” sourcePlaystate=”play”.../>

Tips for Opening HTML Page Links

• RealPlayer passes the entire URL to the browser, which requests the
resource. You can therefore include in the SMIL href attribute any
additional parameters you want the browser to receive. A common use of
this is linking to an anchor in an HTML page:

<area href=”http://www.example.com/story.html#part2” external=”true”.../>

• If the RealPlayer media playback pane is operating in full-screen mode, it
resumes normal-size operation when a link opens in a browsing window.
For more on full-screen mode, see “Controlling How a Presentation
Initially Displays” on page 517.

• If you use sourcePlaystate=“play” to keep the SMIL presentation playing
while the viewer’s default Web browser opens the link, you cannot prevent
the browser from obscuring RealPlayer. Whether RealPlayer remains in
front of other applications as it plays is entirely under the viewer’s control.

• When targeting modem users and using sourcePlaystate=“play”, leave a few
Kbps of bandwidth available to download HTML pages, depending on the
size of the HTML pages that will display. To minimize bandwidth required
by the browser, link to Web pages that do not contain large graphics. The
table “Maximum Streaming Rates” on page 46 lists bandwidth targets.
378

CHAPTER 15: Hyperlinks
• See “Adjusting Audio Volumes in Linked Presentations” on page 384 for
information on using the sourceLevel attribute to change the RealPlayer
volume when the Web page opens.

Linking to Streaming Media
When you link to another streaming media presentation, whether a SMIL file
or a single clip, you can open the link URL in the existing RealPlayer media
playback pane, or pop up a new media playback window. The following table
summarizes the attributes that you use to link to streaming media.

Replacing the Source Presentation

A link that does not include the external=“true” attribute (which opens the link
in a Web browser) replaces the current presentation in the RealPlayer media
playback pane. The source presentation is only paused, however, so the viewer
can return to it by clicking RealPlayer's Play>Previous Clip command. Hence,
an RTSP link like the following:

<area href=”rtsp://helixserver.example.com/video2.rm”/>

is equivalent to the following link, in which the show, destinationPlaystate, and
sourcePlaystate attributes are explicitly set to their default values:

<area href=”rtsp://helixserver.example.com/video2.rm” show=”replace”
destinationPlaystate=”play” sourcePlaystate=”pause”/>

Attributes for Streaming Media Hyperlinks

Attribute Value Default Function Reference

href=”command:
openwindow()”

(name,
URL)

(none) Opens media from Flash,
RealPix, or RealText.

page 384

destinationLevel percentage 100% Sets audio level of target. page 384

destination
Playstate

pause|play play Sets play state of target. page 380

show new|replace replace Opens link in a new or the
current window.

page 380

sourceLevel percentage 100% Sets audio level of source. page 384

sourcePlaystate pause|play|
stop

pause|play Sets play state of source
depending on show.

page 380

target ID (none) Links to a specific window
or region.

page 381
379

RealNetworks Production Guide
Note: Currently, the source clip always stops, rather than
pauses, when the destination clip replaces it.

In some cases, you may want to set destinationPlaystate=“pause” to keep the
new presentation from playing until the viewer clicks the RealPlayer Play
button. It’s not necessary ever to include the sourcePlaystate attribute when
replacing a presentation in RealPlayer. Its value of pause is always used with
show=“replace”, so specifying play or stop for sourcePlaystate has no effect.

The following table summarizes the possible hyperlink attribute values for
replacing a presentation in the existing RealPlayer pane. The first option listed
in the table is the default.

Opening a New Media Playback Window with SMIL

You can use either the show or the target attribute to open a new media
playback window. The basic means for doing this is to set show=”new” in the
link tag. You can open any number of new windows this way. Using
show=”new” does not create a named window that you can target with another
hyperlink, however:

<area href=”rtsp://helixserver.example.com/video2.rm” show=“new”.../>

By default, the current window containing the link and the new window with
the target media are both set to play. Therefore, the preceding example is
equivalent to the following example:

<area href=”rtsp://helixserver.example.com/video2.rm” show=”new”
sourcePlaystate=”play” destinationPlaystate=”play”.../>

Depending on how you want linking to operate, you can change the setting for
sourcePlaystate to pause or stop. You can also set destinationPlaystate to pause. A
common scenario is to pause the source presentation when the viewer opens
the new window. The viewer can restart the source presentation by clicking the
RealPlayer Play button. The following example illustrates this markup:

Hyperlink Attributes for Replacing a Presentation in RealPlayer

Source Destination Attributes

pause play show=”replace” sourcePlaystate=”pause”
destinationPlaystate=”play”

pause pause show=”replace” sourcePlaystate=”pause”
destinationPlaystate=”pause”

stop play or pause Not allowed. The source state is always pause.
380

CHAPTER 15: Hyperlinks
<area href=”rtsp://helixserver.example.com/video2.rm” show=”new”
sourcePlaystate=”pause” destinationPlaystate=”play”/>

 Targeting a Specif ic Window or Region

Note: Targeting a named media window or region is not
currently functional in RealPlayer.

Whereas show=“new” opens a link in a new, unnamed media playback window,
target=“name” creates a named window that you can select through subsequent
hyperlinks. It also lets you open linked media in a specific SMIL region of an
existing window, rather than in a new window. The show=“new” attribute does
not include these two capabilities.

The target attribute takes a user-defined name as its value. As with show=“new”,
you can set sourcePlaystate to play, pause, or stop. You can also set
destinationPlaystate to play or pause. The following example defines a link that
opens in a SMIL region or a new window named play3:

<area href=”rtsp://helixserver.example.com/video2.rm” target=“play3”
sourcePlaystate=”pause” destinationPlaystate=”play”.../>

When RealPlayer opens the link in preceding example, it displays the linked
media in the following way:

1. RealPlayer displays the linked media in the existing SMIL region named
play3. That is, it looks for a SMIL region in any open window that has the
play3 ID:

<region id=”play3” .../>

2. If no SMIL region named play3 exists, RealPlayer displays the linked media
in the window named play3. That is, it looks for a window created through
a previous hyperlink that used a target=”play3” attribute.

3. If no window named play3 exists, RealPlayer creates a new window with
the play3 name, displaying the linked media in that window.

 Tips for Opening Streaming Media in New Windows

• If you use both target and show in a link, the show attribute is ignored.

• You can use target exclusively to define your streaming media hyperlinks:

• To replace the current presentation, include neither target nor show.
Replacing the presentation is the default action, so you do not need to
include these attributes.
381

RealNetworks Production Guide
• Use target=”name” to open a link in a SMIL region, or in a new or
existing window.

• The following table summarizes the attribute values for opening
streaming media in a new RealPlayer window, using either show=”new” or
target=”name” .

• To avoid possible conf licts, use unique names for all SMIL regions and all
windows that you open with target=”name”.

• Use short, single-word names with target=”name”.

• Do not use target=”_new”.

• When you open linked media in a new or existing window, the window
resizes to the media’s defined size.

• When you open linked media in an existing SMIL region, the window does
not resize, and the region’s fit attribute determines how the linked media
appears if the region and media are different sizes. See “Fitting Clips to
Regions” on page 303 for more on fit.

Linking to a SMIL Fragment

A SMIL file hyperlink can target a specific place in another SMIL file, or
another part of itself. To create a link of this type, you include the appropriate
SMIL ID in the href attribute after the URL and a pound sign (#), just as if
linking to an HTML fragment:

Attributes for Opening Streaming Media in a New Window

Source Destination Attributes

play play show=”new”|target=”name”
sourcePlaystate=”play” destinationPlaystate=”play”

play pause show=”new”|target=”name”
sourcePlaystate=”play” destinationPlaystate=”pause”

pause play show=”new”|target=”name”
sourcePlaystate=”pause” destinationPlaystate=”play”

pause pause show=”new”|target=”name”
sourcePlaystate=”pause” destinationPlaystate=”pause”

stop play show=”new”|target=”name”
sourcePlaystate=”stop” destinationPlaystate=”play”

stop pause show=”new”|target=”name”
sourcePlaystate=”stop” destinationPlaystate=”pause”
382

CHAPTER 15: Hyperlinks
<area href=”rtsp://helixserver.example.com/movie2.smil#text_and_video” .../>

The preceding link opens the designated SMIL file, and starts playback at the
clip or group that includes the text_and_video ID:

<par id=”text_and_video”>
 <video src=”video2.rm” region=”newsregion”/>
 <textstream src=”text.rt” region=”textregion”/>
</par>

Note that the target SMIL file defines two regions, newsregion and textregion.
When RealPlayer receives the new SMIL file, it creates those regions as
specified in the new SMIL file’s header.

 Linking to a Clip with a Timeline Offset

Note: Linking to a clip with a timeline offset is not currently
functional in RealPlayer.

You can use the <area> tag’s time coordinates to create a timeline offset in a
linked clip. Suppose that you want to link a video to another video at 30
seconds into the second video’s timeline. In the source SMIL file, you define a
link from the first video to a SMIL file that contains the second video. In the
second SMIL file, the video’s <area> tag defines the timeline offset using SMIL
timing parameters.

Here is a sample of the link in the first SMIL file:

<video src=”video1.rm” region=”video_region”>
 <area href=”rtsp://helixserver.example.com/newmedia.smil#vid2”/>
</video>

The following is the linked video clip in the second SMIL file, newmedia.smil:

<video src=”video2.rm” region=”newsregion”>
 <area id=”vid2” begin=”30s”/>
</video>

For More Information: “Specifying Time Values” on page 315
describes the SMIL timing values.

Tips for Linking to SMIL Fragments

• To link to a fragment within the same SMIL file, use only href=”#ID”.
383

RealNetworks Production Guide
• You can link to any clip, <par>, <seq>, <excl>, or <switch> group by defining
an id attribute for the clip or group. Do not link to an element in a SMIL
file header, however, or to an element within a <switch> group.

• You cannot link to a clip in a <par> group and exclude the other clips in
that group. All clips in the group will play in their designated regions.

• If additional clips follow the target clip in the SMIL file, those clips play as
well. If you want to link to a single clip, but the SMIL file that contains
the clip includes other clips as well, link to the desired clip directly. Or
create a new SMIL file that lists only the single target clip.

Adjusting Audio Volumes in Linked Presentations

Two attributes in a hyperlink tag, sourceLevel and destinationLevel, can adjust
the volume of the source player and the destination player when a link opens.
If the source clip does not stop or pause when the link opens, for example, you
can use sourceLevel to turn down the source player’s volume and boost the
destination player’s volume:

<area href=”...” sourceLevel=“35%” destinationLevel=“125%”.../>

The audio level attributes always use a percentage value. The default value of
100% keeps the player at its current volume setting. A 50% value, for example,
turns the player’s audio volume down to half of its current setting, whereas a
value of 200% doubles the audio volume.

Note that the sourceLevel and destinationLevel attributes control only the
relative volume of the audio stream sent to the speakers. They do not change
the general sound level setting on the viewer’s computer, which remains
entirely under the viewer’s control. All sound level adjustments are subject to
limitations in the computer hardware.

Tip: When displaying a Web page, as described in “Linking to
HTML Pages” on page 373, you can use sourceLevel to turn
down or boost RealPlayer’s volume as appropriate. The
destinationLevel attribute will not affect any audio elements,
such as an embedded WAV file played by the browser, though.

 Opening a Media Playback Window with a Clip Link

A RealText, RealPix, or a Flash clip, playing alone or as part of a SMIL
presentation, can define a hyperlink that opens another clip in a new media
playback window, and stops the original presentation, on a click. This type of
384

CHAPTER 15: Hyperlinks
link uses a proprietary parameter, command:openwindow(name,URL), as the value
of the href attribute. This is not a SMIL feature, and you write this parameter
directly into the RealText or RealPix markup, or encode it in the Flash Player
file with the Get URL command.

The hypertext reference for this type of link has the following structure:

href=“command:openwindow(name, URL, [zoomlevel=double|full|normal])”

The command:openwindow parameter requires two arguments, name and URL.
The zoomlevel argument is optional. You can separate arguments with a
comma, but this is not required. A space may precede or follow a comma. If an
argument contains characters such as commas or parentheses, enclose it in
single quotation marks.

Window Names

The required name argument, which supplies a predefined or user-defined
name for the new media playback window, is the first parameter listed for
command:openwindow. The following table describes the parameter values.

Target URL

Following the name argument, the required URL argument gives the fully
qualified URL to the clip or SMIL presentation to play in the new window.
You must include the protocol (rtsp://, http://, chttp://, or file://) in the URL.
Relative URLs do not work.

For testing, or if developing a presentation that plays back locally for all
viewers, you can use absolute, local URLs in the following format, which
includes three forward slashes in file:///, and uses forward slashes in path
names as well:

file:///C:/My Documents/videos/video1.rm

name Parameter

Value Action

_new or
_blank

Opens a new media playback window each time the viewer clicks the link.
Each subsequent link named _new or _blank opens a new window as well.

_self or
_current

Opens the URL in the current media playback window.

name Creates a new media playback window with the user-defined name. A
subsequent openwindow command using the same name opens the given
URL in the same window.
385

RealNetworks Production Guide
Zoom Level

The optional zoomlevel=double|full|normal argument sets the new media
playback window to open in double-size or full-screen mode respectively. The
normal value is the default. If the operating system does not support full-
screen mode, normal mode is used instead.

For More Information: You can also open the initial presentation
in double or full-screen mode by using a Ram file. For details
on doing this, as well as guidelines for using double and full-
screen modes, see “Controlling How a Presentation Initially
Displays” on page 517.

Note: Earlier versions of RealPlayer support additional
parameters, such as autosize and ontopwhileplaying, that
RealOne Player through RealPlayer 10 ignore. Later versions of
RealPlayer are therefore backwards-compatible with
presentations developed for earlier versions of RealPlayer.
These additional parameters are obsolete, however.

Examples

The following examples show how to target various windows with the
command:openwindow hyperlink syntax inRealText and Flash clips. These
examples link to single RealVideo clips, but you can link to any streaming clip
or SMIL presentation.

Targeting the Same Window with Multiple Links

The following RealText link opens a URL in a new media playback window
named feature :

<a href=”command:openwindow(feature,
rtsp://helixserver.example.com/comedy.rm)”>Comedy Hour

The syntax in RealPix is the following:

url=”command:openwindow(feature, rtsp://helixserver.example.com/comedy.rm)”

In Flash, the Get URL command looks like this:

command:openwindow(feature, rtsp://helixserver.example.com/comedy.rm)

When first clicked, this link creates a media playback window named feature.
If another link also targets the feature window, clicking that link starts the
new URL in the feature window. Clicking the link in the following example
starts an animal program in the window running the comedy program:
386

CHAPTER 15: Hyperlinks
<a href=”command:openwindow(feature,
rtsp://helixserver.example.com/animals.rm)”>Sharks!

The RealPix markup is this:

url=”command:openwindow(feature, rtsp://helixserver.example.com/animals.rm)”

The Flash Get URL version looks like this:

command:openwindow(feature, rtsp://helixserver.example.com/animals.rm)

Opening Separate Windows

Each link opens a separate window if the window names are different, or you
use the predefined name _new or _blank. The following RealText links open
separate windows:

<a href=”command:openwindow(_new,
rtsp://helixserver.example.com/comedy.rm)”>Comedy Hour

<a href=”command:openwindow(_blank,
rtsp://helixserver.example.com/animals.rm)”>Sharks!

The following are the corresponding RealPix links:

url=”command:openwindow(_new, rtsp://helixserver.example.com/comedy.rm)”

url=”command:openwindow(_blank, rtsp://helixserver.example.com/animals.rm)”

In Flash, the Get URL commands look like these:

command:openwindow(_new, rtsp://helixserver.example.com/comedy.rm)

command:openwindow(_blank, rtsp://helixserver.example.com/animals.rm)

Launching Clips in the Current Window

Use either _current or _self to open the URL in the current window. The
following example is for RealText:

<a href=”command:openwindow(_self,
rtsp://helixserver.example.com/comedy.rm)”>Comedy Hour

The next RealText link plays the clip at double its encoded size:

<a href=”command:openwindow(_current,
rtsp://helixserver.example.com/animals.rm, zoomlevel=double)”>Sharks!

The following are the same commands given through RealPix:

url=”command:openwindow(_self, rtsp://helixserver.example.com/comedy.rm)”

url=”command:openwindow(_current, rtsp://helixserver.example.com/animals.rm,
zoomlevel=double)”

The following are the same commands issued through Get URL in Flash:
387

RealNetworks Production Guide
command:openwindow(_self, rtsp://helixserver.example.com/comedy.rm)

command:openwindow(_current, rtsp://helixserver.example.com/animals.rm,
zoomlevel=double)

Tips for Opening Media Windows with RealText, ReaPix, or Flash

• Unlike HTML, RealNetworks markup tags are case-sensitive. Be sure to
use lowercase for command:openwindow and its parameters.

• When the viewer clicks a command:openwindow link, the new clip
automatically plays, and the presentation that contains the link stops.
You cannot change this playback state to pause the original presentation,
for example.

• RealText, RealPix, and Flash clips can also open Web page hyperlinks in a
browser window. For basic information on hypertext links in RealText, see
“Creating Links and Issuing Commands” on page 135. For RealPix, see
“Adding a Presentation URL” on page 161

• Because command:openwindow is not a SMIL command, it does not offer all
the SMIL linking features, such as activating automatically or on a
keystroke.

• If the area for a SMIL hyperlink overlaps that of a command:openwindow
link, the SMIL link is used.

• The command:openwindow syntax is backwards-compatible with RealPlayer
7 and RealPlayer 8, but not earlier RealPlayers, including RealPlayer G2.

Hyperlink Examples
The following examples show different applications of hyperlinking. To see
more examples, get the zipped HTML version of this guide as described in
“How to Download This Guide to Your Computer” on page 11, and view the
Sample Files page.

Opening Web Pages During a Presentation

The following markup uses a series of <area/> tags with different begin times
to open four Web pages at different points as an audio clip plays. The
actuate=”onLoad” attribute causes each link to open its Web page as soon as the
link becomes active. Because the links do not use rn:sendTo="_rpbrowser", the
388

CHAPTER 15: Hyperlinks
pages open in secondary browsing windows. The sourcePlaystate="play"
attribute keeps the clip playing as each page opens:

<audio src="audio1.rm">
 <area href="http://www.example.com/page1.htm" begin="30s" external="true"
 actuate="onLoad" sourcePlaystate="play"/>
 <area href="http://www.example.com/page2.htm" begin="1min" external="true"
 actuate="onLoad" sourcePlaystate="play"/>
 <area href="http://www.example.com/page3.htm" begin="2min" external="true"
 actuate="onLoad" sourcePlaystate="play"/>
 <area href="http://www.example.com/page4.htm" begin="3min" external="true"
 actuate="onLoad" sourcePlaystate="play"/>
</audio>

Tip: Opening a Web page requires bandwidth. If your
streaming media uses all of the viewer’s available bandwidth,
opening a Web page may cause the presentation to stall. When
opening Web pages during a presentation, be sure that your
streaming media uses less bandwidth than the maximum
listed in the table “Maximum Streaming Rates” on page 46.

Opening Pages on a Mouse Click

A link to an HTML page does not have to open automatically. If you leave out
the actuate=”onLoad” attribute, the link opens only when the viewer clicks the
clip. In the following example, the video clip defines four timed hyperlinks.
The begin and dur attributes make each link active for one minute at a
different point in the presentation. Viewers therefore display different pages
depending on when they click the video clip:

<video src="rtsp://helixserver.example.com/video1.rm">
 <area href="http://www.example.com/page1.htm" begin="0s" dur="1min"
 external="true" rn:sendTo="_rpbrowser" sourcePlaystate="pause"
 alt="Go to Page 1"/>
 <area href="http://www.example.com/page2.htm" begin="1min" dur="1min"
 external="true" rn:sendTo="_rpbrowser" sourcePlaystate="pause"
 alt="Go to Page 2"/>
 <area href="http://www.example.com/page3.htm" begin="2min" dur="1min"
 external="true" rn:sendTo="_rpbrowser" sourcePlaystate="pause"
 alt="Go to Page 3"/>
 <area href="http://www.example.com/page4.htm" begin="3min"
 external="true" rn:sendTo="_rpbrowser" sourcePlaystate="pause"
 alt="Go to Page 4"/>
</video>
389

RealNetworks Production Guide
390

P A R T
VII

Par t V II: MASTERING ADVANCED FEATURES
With the basics mastered, you’re ready to learn SMIL’s power
features. Chapter 16 explains how to create special effects when
a clip starts or stops playing. Read Chapter 17 to learn how to
transform clips as they play. Chapter 18 explains how to stream
different clips based on viewer criteria, such as language
preference. Prefetching, which Chapter 19 describes, lets you
download clip data before a clip plays.

C H A P T E R
16

 Chapter 16: TRANSITION EFFECTS
You can enhance your presentation’s appeal by adding visual effects
that occur when any type of visual clip starts or stops. With more
than a hundred transition effects available, your streaming
presentation can include special effects found in professional video
production. You can also use transition effects to create a streaming
slideshow from still images.

Understanding Transition Effects
A transition occurs every time a clip starts or stops playing. If you do not use a
transition effect, the clip simply appears when it starts playing and, depending
on its fill attribute, disappears when it stops playing. Using transition effects
makes these transitions more visually compelling. Instead of just appearing
onscreen, the clip might slowly fade in from a solid color. Or, a five-point star
might expand from the center of a region to reveal the clip. Instead of just
disappearing when it stops playing, a clip might crossfade into the clip that
plays next.

Examples of Transition Effects
393

RealNetworks Production Guide
Timelines and Transition Effects

By default, each transition lasts one second, but you can make a transition last
any length of time. Using transition effects does not affect a presentation’s
timeline. For example, a two-second transition applied to the end of a clip
occurs during the last two seconds that the clip plays. If it is applied to the
beginning of the clip, it occurs during the first two seconds of playback.

For More Information: For instructions on doing this, see
“Setting a Transition Effect’s Duration” on page 409.

Layouts and Transition Effects

You can use a transition effect with any visual clip regardless of the layout
you’ve defined, or whether another clip precedes or follows the clip that uses
the effect. When a clip starts, the area it covers is treated as its background,
whether that area is a region color, a clip in another region, or a clip in the
same region. A transition effect simply introduces the clip over, or removes the
clip from, its background. So when you use transitions with a sequence of
clips, the clips do not have to be the same size.

Animations and Transition Effects

Transition effects are distinct from the SMIL animations described in Chapter
17. A transition effect is a special effect that occurs when a clip starts or stops
playing. An animation, on the other hand, is a special effect that occurs while
a clip plays. You can use both transition effects and animations in the same
presentation. You can even apply them to the same clip. But you define them
separately.

Audio and Transition Effects

A transition effect does not change a clip’s audio level. If you slowly fade into a
video, for example, the audio plays normally throughout the fade. You can
change a clip’s audio level, however, by animating the clip region’s soundLevel
attribute. See “Controlling Audio Volume in a Region” on page 294 for
information about soundLevel. Chapter 17 describes SMIL animations.
394

CHAPTER 16: Transition Effects
Multiple Clips with Transition Effects

Transition effects are applied to individual clips. Two clips playing in separate
regions might end at the same time and use the same transition effect, such as
a wipe transition that travels from left to right. In this case, two separate wipe
transitions occur, one for each clip. Each transition effect is confined to the
region in which the clip plays. You cannot make a single transition effect apply
to both clips. For example, you cannot make the left-to-right wipe effect travel
across the entire root-layout area, ushering in a new clip to each region as it
passes over the region.

Summary of Transition Effects Tags

The following SMIL sample illustrates the functions and relationships of the
tags used to create transition effects. The remainder of this chapter describes
how to use these tags and their attributes to define and apply transition
effects:

<smil xmlns=“http://www.w3.org/2001/SMIL20/Language”>
 <head>
 <transition id=”ID1” ...defines a transition type and duration.../>
 <transition id=”ID2” ...defines a transition type and duration.../>
 ...
 </head>
 <body>
 <seq>
 <ref src=”...” transIn=”ID1” ...assigns a transition for the clip beginning.../>
 <ref src=”...” transOut=”ID2” ...assigns a transition for the clip end.../>
 ...
 </seq>
 </body>
</smil>

Defining Transition Types
The SMIL file header section defines the transition effects your presentation
uses. The following example defines three transition effects after the layout:

<head>
 <layout>
 ...layout defined here...
 </layout>
395

RealNetworks Production Guide
 <transition id=”fade1” type=”fade” subtype=”crossfade”/>
 <transition id=”wipe1” type=”pushWipe” subtype=”fromTop”/>
 <transition id=”rad1” type=”radialWipe” subtype=”counterTopBottom”/>
</head>

Each transition is defined by a separate <transition/> tag that typically has at
least three attributes, which are described in the following table.

The following sections describe the various types and subtypes for transition
effects. For convenience, the transition effects are grouped in families that
share broad similarities, such as edge wipes and iris wipes. In defining a
transition, you specify only the type and subtype, however.

Note: Most transitions listed in the following sections have an
SMPTE (Society of Motion Picture and Television Engineers)
code. This code is provided for persons who want to find the
SMIL transition effect that corresponds to a specific SMPTE
transition. SMPTE codes are not used when defining SMIL
transition effects, though.

Tip: To display samples of transition effects in RealPlayer, get
the zipped HTML version of this guide as described in “How to
Download This Guide to Your Computer” on page 11.

Edge Wipe Transition Effects

In the edge wipe family, an “edge” moves over the first clip, revealing the
second clip. As an analogy, imagine a car covered with snow. As the windshield
wiper moves, its edge reveals the underlying windshield. In these transitions,

Basic Transition Effects Attributes

Attribute Function

id Sets a unique ID used to assign the transition to clips. For rules about
creating IDs, see “SMIL Tag ID Values” on page 200.

type Identifies a group of transition effects. This attribute is required.

subtype Determines which member of the transition type group is used.
396

CHAPTER 16: Transition Effects
the edge may be different shapes, such as a straight line, a wedge, or a zigzag.
The first subtype listed for each type in the following table is the default.

Edge Wipe Transition Effects

Type Subtype SMPTE Transition Appearance

barWipe
leftToRight 1 A bar moves from left to right.

topToBottom 2 A bar moves from top to bottom.

boxWipe

topLeft 3 A box expands from the upper-left
corner to the lower-right corner.

topRight 4 A box expands from the upper-right
corner to the lower-left corner.

bottomRight 5 A box expands from the lower-right
corner to the upper-left corner.

bottomLeft 6 A box expands from the lower-left
corner to the upper-right corner.

topCenter 23 A box expands from the top edge’s
midpoint to the bottom corners.

rightCenter 24 A box expands from the right edge’s
midpoint to the left corners.

bottomCenter 25 A box expands from the bottom edge’s
midpoint to the top corners.

leftCenter 26 A box expands from the left edge’s
midpoint to the right corners.

fourBoxWipe

cornersIn 7 A box shape expands from each of the
four corners toward the center.

cornersOut 8 A box shape expands from the center of
each quadrant toward the corners of
each quadrant.

barnDoorWipe

vertical 21 A central, vertical line splits and expands
toward the left and right edges.

horizontal 22 A central, horizontal line splits and
expands toward the top and bottom
edges.

diagonalBottom
Left

45 A diagonal line from the lower-left to
upper-right corners splits and expands
toward the opposite corners.

diagonalTopLeft 46 A diagonal line from upper-left to lower-
right corners splits and expands toward
the opposite corners.

 (Table Page 1 of 3)
397

RealNetworks Production Guide
diagonalWipe

topLeft 41 A diagonal line moves from the upper-
left corner to the lower-right corner.

topRight 42 A diagonal line moves from the upper
right corner to the lower-left corner.

bowTieWipe

vertical 43 Two wedge shapes slide in from the top
and bottom edges toward the center.

horizontal 44 Two wedge shapes slide in from the left
and right edges toward the center.

miscDiagonal
Wipe

doubleBarnDoor 47 Four wedge shapes split from the center
and retract toward the four edges.

doubleDiamond 48 A diamond connecting the four edge
midpoints simultaneously contracts
toward the center and expands toward
the edges.

veeWipe

down 61 A wedge shape moves from top to
bottom.

left 62 A wedge shape moves from right to left.

up 63 A wedge shape moves from bottom to
top.

right 64 A wedge shape moves from left to right.

barnVeeWipe

down 65 A “V” shape extending from the bottom
edge’s midpoint to the opposite corners
contracts toward the center and expands
toward the edges.

left 66 A “V” shape extending from the left
edge’s midpoint to the opposite corners
contracts toward the center and expands
toward the edges.

up 67 A “V” shape extending from the top
edge’s midpoint to the opposite corners
contracts toward the center and expands
toward the edges.

right 68 A “V” shape extending from the right
edge’s midpoint to the opposite corners
contracts toward the center and expands
toward the edges.

Edge Wipe Transition Effects (continued)

Type Subtype SMPTE Transition Appearance

 (Table Page 2 of 3)
398

CHAPTER 16: Transition Effects
Iris Wipe Transition Effects

A transition effect in the iris wipe family reveals a clip through an expanding
shape. For example, a star can expand from the center of the transition area to
reveal a new clip. The first subtype listed for each type in the following table is
the default.

zipZagWipe

leftToRight 71 A zigzag shape moves from left to right.

topToBottom 72 A zigzag shape moves from top to
bottom.

barnZigZag
Wipe

vertical 73 The vertical, central line splits in a
zigzag pattern and moves toward the
left and right edges.

horizontal 74 The horizontal, central line splits in a
zigzag pattern and moves toward the
top and bottom edges.

Edge Wipe Transition Effects (continued)

Type Subtype SMPTE Transition Appearance

 (Table Page 3 of 3)

Iris Wipe Transition Effects

Type Subtype SMPTE Transition Appearance

irisWipe

rectangle 101 A rectangle expands from the center.

diamond 102 A four-sided diamond expands from the
center.

triangleWipe

up 103 A triangle pointed toward the top edge
expands from the center.

right 104 A triangle pointed toward the right edge
expands from the center.

down 105 A triangle pointed toward the bottom edge
expands from the center.

left 106 A triangle pointed toward the left edge
expands from the center.

 (Table Page 1 of 2)
399

RealNetworks Production Guide
arrowHeadWipe

up 107 An arrowhead shape pointed toward the top
edge expands from the center.

right 108 An arrowhead shape pointed toward the
right edge expands from the center.

down 109 An arrowhead shape pointed toward the
bottom edge expands from the center.

left 110 An arrowhead shape pointed toward the left
edge expands from the center.

pentagonWipe

up 111 A pentagon pointed toward the top edge
expands from the center.

down 112 A pentagon pointed toward the bottom edge
expands from the center.

hexagonWipe

horizontal 113 A hexagon with f lat sides at top and bottom
expands from the center.

vertical 114 A hexagon with f lat sides at left and right
expands from the center.

ellipseWipe

circle 119 A circle expands from the center.

horizontal 120 A horizontal ellipse expands from the center.

vertical 121 A vertical ellipse expands from the center.

eyeWipe

horizontal 122 An eye shape, its corners pointing left and
right, expands from the center.

vertical 123 An eye shape, its corners pointing up and
down, expands from the center.

roundRectWipe

horizontal 124 A horizontal rectangle with rounded corners
expands from the center.

vertical 125 A vertical rectangle with rounded corners
expands from the center.

starWipe

fourPoint 127 A four-pointed star expands from the center.

fivePoint 128 A five-pointed star expands from the center.

sixPoint 129 A six-pointed star expands from the center.

miscShapeWipe
heart 130 A heart shape expands from the center.

keyhole 131 A keyhole shape expands from the center.

Iris Wipe Transition Effects (continued)

Type Subtype SMPTE Transition Appearance

 (Table Page 2 of 2)
400

CHAPTER 16: Transition Effects
Clock Wipe Transition Effects

The clock wipe family includes transition effects in which a clip is revealed by a
radial sweep, similar to the second hand sweeping around the face of a clock.
The first subtype listed for each type in the following table is the default.

Clock Wipe Transition Effects

Type Subtype SMPTE Transition Appearance

clockWipe

clockwiseTwelve 201 A radial hand sweeps clockwise
from the twelve o’clock position.

clockwiseThree 202 A radial hand sweeps clockwise
from the three o’clock position.

clockwiseSix 203 A radial hand sweeps clockwise
from the six o’clock position.

clockwiseNine 204 A radial hand sweeps clockwise
from the nine o’clock position.

pinWheelWipe

twoBladeVertical 205 Two radial hands sweep clockwise
from the twelve and six o’clock
positions.

twoBladeHorizontal 206 Two radial hands sweep clockwise
from the nine and three o’clock
positions.

fourBlade 207 Four radial hands sweep clockwise.

fanWipe

centerTop 211 A fan unfolds from the top edge,
the fan axis at the center.

centerRight 212 A fan unfolds from the right edge,
the fan axis at the center.

top 231 A fan unfolds from the bottom, the
fan axis at the top edge’s midpoint.

right 232 A fan unfolds from the left, the fan
axis at the right edge’s midpoint.

bottom 233 A fan unfolds from the top, the fan
axis at the bottom edge’s midpoint.

left 234 A fan unfolds from the right, the
fan axis at the left edge’s midpoint.

 (Table Page 1 of 4)
401

RealNetworks Production Guide
doubleFanWipe

fanOutVertical 213 Two fans, their axes at the center,
unfold from the top and bottom.

fanOutHorizontal 214 Two fans, their axes at the center,
unfold from the left and right.

fanInVertical 235 Two fans, their axes at the top and
bottom, unfold from the center.

fanInHorizontal 236 Two fans, their axes at the left and
right, unfold from the center.

singleSweepWipe

clockwiseTop 221 A radial hand sweeps clockwise
from the top edge’s midpoint.

clockwiseRight 222 A radial hand sweeps clockwise
from the right edge’s midpoint.

clockwiseBottom 223 A radial hand sweeps clockwise
from the bottom edge’s midpoint.

clockwiseLeft 224 A radial hand sweeps clockwise
from the left edge’s midpoint.

clockwiseTopLeft 241 A radial hand sweeps clockwise
from the upper-left corner.

counterClockwise
BottomLeft

242 A radial hand sweeps counter-
clockwise from the lower-left
corner.

clockwiseBottom
Right

243 A radial hand sweeps clockwise
from the lower-right corner.

counterClockwise
TopRight

244 A radial hand sweeps counter-
clockwise from the upper-right
corner.

Clock Wipe Transition Effects (continued)

Type Subtype SMPTE Transition Appearance

 (Table Page 2 of 4)
402

CHAPTER 16: Transition Effects
doubleSweepWipe

parallelVertical 225 Two radial hands sweep clockwise
and counter-clockwise from the top
and bottom edges’ midpoints.

parallelDiagonal 226 Two radial hands sweep clockwise
and counter-clockwise from the left
and right edges’ midpoints.

oppositeVertical 227 Two radial hands attached at the
top and bottom edges’ midpoints
sweep from right to left.

oppositeHorizontal 228 Two radial hands attached at the
left and right edges’ midpoints
sweep from top to bottom.

parallelDiagonal
TopLeft

245 Two radial hands attached at the
upper-left and lower-right corners
sweep down and up.

parallelDiagonal
BottomLeft

246 Two radial hands attached at the
lower-left and upper-right corners
sweep down and up.

saloonDoorWipe

top 251 Two radial hands attached at the
upper-left and upper-right corners
sweep down.

left 252 Two radial hands attached at the
upper-left and lower-left corners
sweep to the right.

bottom 253 Two radial hands attached at the
lower-left and lower-right corners
sweep up.

right 254 Two radial hands attached at the
upper-right and lower-right corners
sweep to the left.

Clock Wipe Transition Effects (continued)

Type Subtype SMPTE Transition Appearance

 (Table Page 3 of 4)
403

RealNetworks Production Guide
Matrix Wipe Transition Effects

The matrix wipe family includes transition effects in which a clip is revealed by
a series of sequential tiles that follow a pattern, such as a spiral. In the
following table, the first subtype listed for each type is the default.

windshieldWipe

right 261 Two radial hands attached at the
midpoints of the top and bottom
halves sweep from right to left.

up 262 Two radial hands attached at the
midpoints of the left and right
halves sweep from top to bottom.

vertical 263 Two sets of radial hands attached at
the midpoints of the top and
bottom halves sweep from top to
bottom and bottom to top.

horizontal 264 Two sets of radial hands attached at
the midpoints of the left and right
halves sweep from left to right and
right to left.

Clock Wipe Transition Effects (continued)

Type Subtype SMPTE Transition Appearance

 (Table Page 4 of 4)

Matrix Wipe Transition Effects

Type Subtype SMPTE Transition Appearance

snakeWipe

topLeftHorizontal 301 Tiles move in a horizontal zigzag
from the upper-left corner.

topLeftVertical 302 Tiles move in a vertical zigzag from
the upper-left corner.

topLeftDiagonal 303 Tiles move in a diagonal zigzag
from the upper-left corner.

topRightDiagonal 304 Tiles move in a diagonal zigzag
from the upper-right corner.

bottomRightDiagonal 305 Tiles move in a diagonal zigzag
from the lower-right corner.

bottomLeftDiagonal 306 Tiles move in a diagonal zigzag
from the lower-left corner.

 (Table Page 1 of 4)
404

CHAPTER 16: Transition Effects
spiralWipe

topLeftClockwise 310 Tiles spiral clockwise from the
upper-left corner.

topRightClockwise 311 Tiles spiral clockwise from the
upper-right corner.

bottomRightClockwise 312 Tiles spiral clockwise from the
lower-right corner.

bottomLeftClockwise 313 Tiles spiral clockwise from the
lower-left corner.

topLeft
CounterClockwise

314 Tiles spiral counter-clockwise from
the upper-left corner.

topRight
CounterClockwise

315 Tiles spiral counter-clockwise from
the upper-right corner.

bottomRight
CounterClockwise

316 Tiles spiral counter-clockwise from
the lower-right corner.

bottomLeft
CounterClockwise

317 Tiles spiral counter-clockwise from
the lower-left corner.

Matrix Wipe Transition Effects (continued)

Type Subtype SMPTE Transition Appearance

 (Table Page 2 of 4)
405

RealNetworks Production Guide
parallelSnakes
Wipe

verticalTopSame 320 Tiles move in two vertical zigzags,
lines headed the same direction,
starting from the upper-left and
upper-right corners.

verticalBottomSame 321 Tiles move in two vertical zigzags,
lines headed the same direction,
starting from the lower-left and
lower-right corners.

verticalTopLeft
Opposite

322 Tiles move in two vertical zigzags,
lines headed opposite directions,
starting from the upper-left and
lower-right corners.

verticalBottomLeft
Opposite

323 Tiles move in two vertical zigzags,
lines headed opposite directions,
starting from the lower-left and
upper-right corners.

horizontalLeftSame 324 Tiles move in two horizontal
zigzags, lines headed the same
direction, starting from the upper-
left and lower-left corners.

horizontalRightSame 325 Tiles move in two horizontal
zigzags, lines headed the same
direction, starting from the upper-
right and lower-right corners.

horizontalTopLeft
Opposite

326 Tiles move in two horizontal
zigzags, lines headed opposite
directions, starting from the
upper-left and lower-right corners.

horizontalTopRight
Opposite

327 Tiles move in two horizontal
zigzags, lines headed opposite
directions, starting from the
upper-right and lower-left corners.

diagonalBottomLeft
Opposite

328 Two tile zigzags move outward in
opposite directions from the
diagonal line connecting the lower-
left and upper-right corners.

diagonalTopLeft
Opposite

329 Two tile zigzags move outward in
opposite directions from the
diagonal line connecting the
upper-left and lower-right corners.

Matrix Wipe Transition Effects (continued)

Type Subtype SMPTE Transition Appearance

 (Table Page 3 of 4)
406

CHAPTER 16: Transition Effects
Fade, Push, and Slide Transition Effects

This transition family, which has no corresponding SMPTE codes, includes
fades that let you blend images into one another, or fade an image into or out
of a solid color. The push and wipe transition effects allow a second clip to

boxSnakesWipe

twoBoxTop 340 Two lines of tiles spiral inward,
starting in the upper corners and
moving vertically.

twoBoxBottom 341 Two lines of tiles spiral inward,
starting in the lower corners and
moving vertically.

twoBoxLeft 342 Two lines of tiles spiral inward,
starting in the left corners and
moving horizontally.

twoBoxRight 343 Two lines of tiles spiral inward,
starting in the right corners and
moving horizontally.

fourBoxVertical 344 Four lines of tiles spiral inward,
starting in the four corners and
moving vertically.

fourBoxHorizontal 345 Four lines of tiles spiral inward,
starting in the four corners and
moving horizontally.

waterfallWipe

verticalLeft 350 Tiles cascade vertically from the
left in a waterfall effect.

verticalRight 351 Tiles cascade vertically from the
right in a waterfall effect.

horizontalLeft 352 Tiles cascade horizontally from the
left in a waterfall effect.

horizontalRight 353 Tiles cascade horizontally from the
right in a waterfall effect.

Matrix Wipe Transition Effects (continued)

Type Subtype SMPTE Transition Appearance

 (Table Page 4 of 4)
407

RealNetworks Production Guide
push the first clip out of the way, or to slide over it. In the following table, the
first subtype for a certain type is the default.

Note: Push wipe transition effects are not currently functional
in RealPlayer.

For More Information: With color fades, see See “Defining
Colors and Border Blends” on page 412 for information on
color values.

Modifying Transition Effects
The following sections describe optional <transition/> tag attributes that
modify the appearance of the transition effects. The following table
summarizes these attributes.

Fade, Push, and Slide Transition Effects

Type Subtype Transition Appearance

fade

crossfade The clip fades into the clip that follows it.

fadeFromColor The clip fades in from a solid color.

fadeToColor The clip fades out into a solid color.

pushWipe

fromLeft The clip pushes out the preceding clip from left to right.

fromRight The clip pushes out the preceding clip from right to left.

fromTop The clip pushes out the previous clip from top to bottom.

fromBottom The clip pushes out the previous clip from bottom to top.

slideWipe

fromLeft The clip slides over the preceding clip from left to right.

fromRight The clip slides over the preceding clip from right to left.

fromTop The clip slides over the previous clip from top to bottom.

fromBottom The clip slides over the previous clip from bottom to top.

Attributes for Modifying Transition Effects

Attribute Value Default Function Reference

borderColor blend|
color_value

black Defines the border color. page 412

borderWidth pixels 0 Specifies the border size. page 412

direction forward|
reverse

forward Sets the direction of movement. page 409

 (Table Page 1 of 2)
408

CHAPTER 16: Transition Effects
Setting a Transition Effect’s Duration

By default, each transition effect lasts one second, but you can change this by
adding a dur attribute to the <transition/> tag. As described in “Timelines and
Transition Effects” on page 394, changing a transition effect’s duration does
not affect the presentation duration. In the following example, the transition
effect takes three seconds to complete:

<transition id=”fade1” type=”fade” subtype=”crossfade” dur=”3s”/>

To use the same transition type but vary the transition speeds, define the
transition multiple times, each time with a different ID and duration. For
example, the following tags define the same transition type and subtype, but
the first effect lasts two seconds whereas the second effect lasts four seconds:

<transition id=”fan1” type=”fanWipe” subtype=”top” dur=”2s”/>
<transition id=”fan2” type=”fanWipe” subtype=”top” dur=”4s”/>

For More Information: The dur attribute uses the standard SMIL
timing values, which are described in “Specifying Time Values”
on page 315.

Reversing a Transition Effect’s Direction

Using direction=“reverse”, you can change the direction a transition effect runs.
For example, the following transition effect reveals the clip in a four-point star
that expands outward:

<transition id=”p1” type=”starWipe” subtype=”fourPoint”/>

Reversing the direction creates a four-point star that contracts inward:

<transition id=”p2” type=”starWipe” subtype=”fourPoint” direction=”reverse”/>

dur time_value 1s Specifies the effect duration. page 409

endProgress 0.0-1.0 1.0 Halts the effect before it finishes. page 410

fadeColor color_value black Sets the color for fade transitions. page 412

horzRepeat integer 1 Multiplies the effect horizontally. page 411

startProgress 0.0-1.0 0.0 Starts the effect at a midway point. page 410

vertRepeat integer 1 Multiplies the effect vertically. page 411

Attributes for Modifying Transition Effects (continued)

Attribute Value Default Function Reference

 (Table Page 2 of 2)
409

RealNetworks Production Guide
For some transition effects, you can simply use a different subtype rather than
include the attribute direction=“reverse”. For example, this transition effect:

<transition id=”p3” type=”pushWipe” subtype=”fromRight”/>

is equivalent to this transition effect:

<transition id=”p4” type=”pushWipe” subtype=”fromLeft” direction=”reverse”/>

Note: Reversing the direction of a transition effect that has no
specific starting or ending point, such as crossfade, has no
visual effect.

Using Partial Transition Effects

Each transition effect has a starting appearance and an ending appearance.
For example, an expanding star transition normally starts as a single point in
the center of the transition area. It ends after the star has expanded out of the
transition area. You can set a different point where a transition effect starts
with startProgress:

<transition id=”wipe1” type=”pushWipe” subtype=”fromLeft” startProgress=”0.25”/>

The startProgress attribute takes a value from 0.0 (normal starting point) to 1.0
(normal ending point). This value represents a percentage. For example,
startProgress=“0.25” means that when the transition effect starts, it appears to
be 25 percent complete already. It then flows to its end point over the course
of its specified duration.

Additionally, you can use endProgress, which also takes a value from 0.0 to 1.0
to indicate how far the transition effect progresses before it ends. The
following example defines a keyhole-shape transition effect that ends when
the keyhole has expanded to half of its normal ending size:

<transition id=”key” type=”miscShapeWipe” subtype=”keyhole” endProgress=”0.5”/>

Tips for Using Partial Transition Effects

• When you use endProgress, the transition effect ends in an intermediate
state. You can use this to create special effects with iris wipes, for example.
With other types of transition effects, though, a partially completed
transition may confuse the viewer.

• You can combine the startProgress and endProgress attributes in a single
<transition/> tag. When you do this, the endProgress value must be equal
410

CHAPTER 16: Transition Effects
to, or higher than, the startProgress value for the transition effect to
exhibit any movement.

• If you set the startProgress and endProgress attributes to the same value in a
<transition/> tag, the transition effect appears to complete instantly,
regardless of its duration.

• When you use a partial transition effect to introduce a new clip in a
sequence, the preceding clip’s fill attribute determines whether parts of
that clip remain visible at the end of the effect. Use one of the following:

• fill=“hold” to keep the first clip visible

• fill=“transition” to make the first clip disappear after the transition
completes

• fill=“remove” to make the first clip disappear before the transition
begins

For More Information: See “Using Clip Fills with Transition
Effects” on page 414 for more information.

Repeating Transition Effects Horizontally or Vertically

When you repeat a transition effect, the effect appears multiple times instead
of just once. For example, an expanding star transition effect normally begins
in the center of the clip and expands toward the clip’s edges. By repeating this
effect twice horizontally and twice vertically, you make a separate star shape
expand in each of the clip’s quadrants, as shown in the following illustration.

Repeating Star Transition Effect

You repeat a transition effect by adding the horzRepeat or vertRepeat attribute
to a <transition/> tag. Each attribute takes as a value a positive integer that
411

RealNetworks Production Guide
defines how many times the transition effect repeats horizontally or vertically,
respectively. For example, the following transition effect defines two four-
point stars that appear side-by-side:

<transition id=”starHorz” type=”starWipe” subtype=”fourPoint” horzRepeat=”2”/>

To have these stars appear one on top of the other, you repeat the effect
vertically:

<transition id=”starVert” type=”starWipe” subtype=”fourPoint” vertRepeat=”2”/>

You can combine horzRepeat and vertRepeat attributes in the same tag. The
following example creates a grid of nine transition effects by defining three
horizontal repetitions and three vertical repetitions:

<transition id=”nineStar” type=”starWipe” subtype=”fourPoint” horzRepeat=”3”
 vertRepeat=”3”/>

Tip: Think of these attributes as defining a table. The
horzRepeat attribute defines the number of columns, and the
vertRepeat attribute defines the number of rows.

Setting a Border Width

All transition effects except fades have borders. When a clip slides over another
clip from left to right, for example, the border is the new clip’s right edge. By
default, the border width is 0 (zero), meaning the border is not accentuated.
By adding a borderWidth attribute to a <transition/> tag, you can make the
border more apparent. This attribute takes as a value a positive integer that
sets the border’s pixel width. The following example sets a two-pixel border
width:

<transition id=”wipe1” type=”pushWipe” subtype=”fromLeft” borderWidth=”2”/>

By default, the border is black, but you can use any other RGB color. You can
also make the border blend the clip with its background. The following
section explains how to do this.

Defining Colors and Border Blends

Transition effects that fade to or from a color, as well as transition effects that
set border widths, can include color values, which are described in Appendix
C. The following example defines a transition effect in which the clip fades to
a solid red:

<transition id=”redFade” type=”fade” subtype=”fadeToColor” fadeColor=”red”/>
412

CHAPTER 16: Transition Effects
If you define a border width as described in the preceding section, you can use
the borderColor attribute to set the border color:

<transition id=”wipe1” type=”pushWipe” subtype=”fromLeft” borderWidth=”2”
 borderColor=”#AFBC08”/>

Alternatively, you can use borderColor=“blend” to make the border blend the
clip into its background. This typically creates a blurring effect along the
border:

<transition id=”wipe1” type=”pushWipe” subtype=”fromLeft” borderWidth=”16”
 borderColor=”blend”/>

Tip: When using borderColor=“blend”, you typically need to set
borderWidth to 10 pixels or higher to notice the blending effect.

Assigning Transition Effects to Clips
After you define <transition/> tags in the SMIL file header, you assign the
transition effects to clips using transIn and transOut attributes in each clip
source tag. You can assign transition effects only to clip source tags, not to
<seq>, <par>, or <excl> groups. Any type of clip can use a transition, but
because transitions are visual, they do not affect a clip’s audio track.

The transIn attribute makes the transition effect occur as the clip starts to
play. The transOut attribute makes the effect occur as the clip finishes playing.
Each attribute takes as a value the ID defined in a <transition/> tag. For
example, suppose that you define the following two transition effects:

<transition id=”fromBlue” type=”fade” subtype=”fadeFromColor” fadeColor=”blue”/>
<transition id=”toBlue” type=”fade” subtype=”fadeToColor” fadeColor=”blue”/>

In the SMIL file body, you could the assign the effects to a sequence of two
videos like this:

<seq>
 <video src=”video1.rm” transIn=”fromBlue” transOut=”toBlue” .../>
 <video src=”video2.rm” transIn=”fromBlue” transOut=”toBlue” .../>
</seq>

In the preceding example, each video fades up from a solid blue when it starts,
then fades down to solid blue when it ends. It’s not necessary to use both the
transIn and transOut attributes for each clip, though. In the following example,
the first video starts playing without any transition. As the first clip ends and
the second clip starts, there’s a fade to blue and then a fade up. When the
second clip stops playback, it disappears from the screen:
413

RealNetworks Production Guide
<seq>
 <video src=”video1.rm” transOut=”toBlue”/>
 <video src=”video2.rm” transIn=”fromBlue” fill=”remove”/>
</seq>

Note: A transition effect assigned with a transOut attribute
always obeys SMIL timing rules. If a video normally plays for
two minutes, but has a dur=“3min” value to lengthen its active
period, the transition effect occurs after three minutes.

Using Clip Fills with Transition Effects

The section “Setting a Fill” on page 329 explains the fill attribute, which
makes the clip disappear or remain visible when it finishes playing. Which
values you use for fill can also affect transition effects. The following sections
explain how best to use the fill attribute with transition effects.

Defining a Transition Fill for a Sequence of Clips

When you apply transition effects to a sequence of clips, use fill=“transition” to
keep a clip onscreen long enough for a transition to occur. The transition value
does nothing when a transition is not applied to the clip. Suppose you want to
use a three-second radial wipe like the following to introduce each new video
in a sequence:

<transition id=”fan1” type=”fanWipe” subtype=”top” dur=”3s”/>

You could apply this transition effect to the beginning of each clip. In a
standard sequence of clips, though, each clip disappears as soon as it stops
playing. The transition effect that introduces the next clip therefore operates
against the region’s background color. To keep clips onscreen during
transitions, add fill=“transition” to each clip’s source tag:

<seq>
 <video src=”video1.rm” transIn=”fan1” fill=”transition”/>
 <video src=”video2.rm” transIn=”fan1” fill=”transition”/>
 ...more clips that use fill=”transition”...
 <video src=”video6.rm” transIn=”fan1” fill=”remove”/>
</seq>

In this sequence, each fill=“transition” attribute keeps the clip onscreen for
three seconds (the duration of the transition effect) after the clip ends
playback, long enough for the transition effect to complete. This does not
414

CHAPTER 16: Transition Effects
lengthen the presentation timeline. The three seconds used for each transition
effect overlap the first three seconds that each new clip plays.

Note: If a clip in a sequence uses a begin value to delay its
playback, a fill=”transition” value in the preceding clip freezes
that clip until the clip with the begin value starts to play and
the transition effect completes. For more on begin, see “Using a
Begin Time with a Clip” on page 317.

Tip: In a long sequence of clips, add fillDefault=“transition” to
the <seq> tag. You do not then need to add fill=“transition” to
every clip tag. For more on fillDefault , see “Specifying a Default
Fill” on page 336.

Setting a Fill in Parallel Groups

When you use parallel groups, a fill=”transition”, fill=“remove” or fill=“freeze”
attribute in a clip source tag can affect when a transition occurs. Suppose that
you define a two-second fade to black:

<transition id=”toBlack” type=”fade” subType=”fadeToColor” dur=”2s”/>

You next apply this transition to both an image and a video playing in parallel.
In the following example, the image clip has a fill=“remove” attribute and a 30-
second duration. The clip begins to fade out at 28 seconds into the parallel
group’s timeline, disappearing much sooner than the video, which has a 154-
second duration:

<par>

 <video src=”...” region=”video” transOut=”toBlack” dur=”154s”/>
</par>

To make the image fade out only after its duration has elapsed, you would use
fill=“transition” as shown in the following example. In this case, the image
disappears 32 seconds after it begins to play:

<par>

 <video src=”...” region=”video” transOut=”toBlack” dur=”154s”/>
</par>

To make the image begin to fade out two seconds before the video finishes
playing, you would use fill=“freeze” as shown in the following example:
415

RealNetworks Production Guide
<par>

 <video src=”...” region=”video” transOut=”toBlack” dur=”154s”/>
</par>

Transition Effects Examples
The following sections illustrate how to use transition tags and attributes to
create various transition effects. To see more examples, get the zipped HTML
version of this guide as described in “How to Download This Guide to Your
Computer” on page 11, and view the Sample Files page.

Fading to a Color Between Clips

One of the simplest transition effects is to fade up from or down to a color.
The following example shows a sequence of two videos. There is a two-second
fade from blue as each video starts, and a two-second fade to blue when each
video ends. Each video is centered within the video region and appears at its
normal size. A begin=”2s” value is used with each video to insert a short delay
before each transition occurs:

<smil xmlns=“http://www.w3.org/2001/SMIL20/Language”>
 <head>
 <layout>
 <root-layout width="320" height="240" backgroundColor="blue"/>
 <region id="video_region"/>
 <regPoint id="middle" left="50%" top="50%" regAlign="center"/>
 </layout>
 <transition id="fromBlue" type="fade" subtype="fadeFromColor"
 fadeColor="blue" dur="2s"/>
 <transition id="toBlue" type="fade" subtype="fadeToColor"
 fadeColor="blue" dur="2s"/>
 </head>
 <body>
 <seq>
 <video src="video2.rm" region="video_region" regPoint="middle"
 transIn="fromBlue" transOut="toBlue" begin="2s" fill="remove"/>
 <video src="video1.rm" region="video_region" regPoint="middle"
 transIn="fromBlue" transOut="toBlue" begin="2s" fill="remove"/>
 </seq>
 </body>
</smil>
416

CHAPTER 16: Transition Effects
Crossfading Videos

In a simple variation of the preceding example, the first video fades up from
green when it starts to play, and the second video fades down to green when it
ends. When the first video stops and the second video starts, though, the two
videos crossfade into each other. Clips do not need to be the same size to
crossfade into each other:

<smil xmlns=“http://www.w3.org/2001/SMIL20/Language”>
 <head>
 <meta name="title" content="Crossfading Videos"/>
 <meta name="author" content="RealNetworks, Inc."/>
 <meta name="copyright" content="(c)2002 RealNetworks, Inc."/>
 <layout>
 <root-layout width="360" height="280" backgroundColor="#87CF87"/>
 <region id="video_region" width="320" height="240" left="20" top="20"/>
 <regPoint id="middle" left="50%" top="50%" regAlign="center"/>
 </layout>
 <transition id="fromGreen" type="fade" subtype="fadeFromColor"
 fadeColor="#87CF87" dur="2s"/>
 <transition id="toGreen" type="fade" subtype="fadeToColor" fadeColor="#87CF87"
 dur="2s"/>
 <transition id="xFade" type="fade" subtype="crossfade" dur="2s"/>
 </head>
 <body>
 <seq>
 <video src="video2.rm" region="video_region" transIn="fromGreen" begin="2s"
 fill="transition" regPoint="middle"/>
 <video src="video3.rm" region="video_region" transIn="xFade" transOut="toGreen"
 fill="remove" regPoint="middle"/>
 </seq>
 </body>
</smil>
417

RealNetworks Production Guide
418

C H A P T E R
17

 Chapter 17: ANIMATIONS
Using SMIL animations, you can transform clips by expanding
them, for example, or moving them around the screen. To use this
advanced SMIL feature, you must thoroughly understand clip tags,
groups, timing, and layouts as described in the preceding chapters.
For information on Flash animation rather than SMIL animation,
see Chapter 5.

Tip: To see animation examples, get the zipped HTML version
of this guide as described in “How to Download This Guide to
Your Computer” on page 11, and view the Sample Files page.

Understanding Animations
SMIL animations provide the means for manipulating clips playing in
RealPlayer. They are not themselves distinct clips. Instead, they are SMIL tags
and attributes that instruct RealPlayer to modify a clip, whether a video, a still
image, a brush object, or any other type of clip. You can even apply a SMIL
animation to a Flash animation clip to “animate an animation.” Common
uses of SMIL animation include:

• enlarging or shrinking a clip,

• moving a clip around the screen,

• changing a region’s background color,

• boosting or cutting a clip’s sound level, and

• altering a clip’s transparency to make it more, or less, opaque.

Tip: Chapter 16 explains transition effects, which are special
effects that occur when a clip starts or stops playing. You can
use transition effects and animations in the same presentation.
You can even apply them to the same clip. But you define them
separately.
419

RealNetworks Production Guide
Animation Tags

You can add an animation to your SMIL presentation using any one of four
animation tags:

• <animate/>

The <animate/> tag is the principal tag used to create animations. The
other tags are variations of the <animate/> tag, so once you learn how to
use <animate/>, you will master the other tags quickly. The section
“Creating Basic Animations” on page 423 explains the main attributes
and values of the <animate/> tag.

• <animateColor/>

The <animateColor/> tag is a variation of the <animate/> tag that works for
color animations only. See the section “Animating Colors” on page 436 for
more on this tag.

• <animateMotion/>

The <animateMotion/> tag lets you move a clip both horizontally and
vertically at the same time. A single <animate/> tag creates motion in only
one direction. Thus, a single <animateMotion/> tag can do the work of two
<animate/> tags. The section “Creating Horizontal and Vertical Motion”
on page 437 explains how to use this tag.

• <set/>

The <set/> tag instantly sets an animation. With an <animate/> tag, you
can widen a region over the course of several seconds, for example. With
the <set/> tag, in contrast, you can set the new width instantly. The
section “Setting an Attribute Value” on page 438 describes the <set/> tag.

Tip: Do not confuse the SMIL animation tags with the
<animation/> tag, which is a clip source tag that introduces an
animation clip into a presentation. For more on <animation/>,
see “Creating Clip Source Tags” on page 207.

Animation Tag Placement

Animation tags always appear in the SMIL <body> section, even when they
modify elements defined in the SMIL header, such as <region/> tags.
Animation tags function much like clip source tags. You can place them in
groups, but you can also include them within clip source tags. The following
sections describe the various means of adding animation tags to a SMIL file.
420

CHAPTER 17: Animations
In a Clip Source Tag

When you want to animate a clip as it plays, you can turn the clip source tag
into a binary tag, as shown in the following example:

<video ...>
 <animate ...animation for the video clip or region.../>
</video>

In this case, the animation typically affects the clip or the region playing the
clip. The animation can occur only while the clip is playing or appears frozen
onscreen. Non-interactive timing attributes in the animation tag are relative
to the start of clip playback. For example, a begin=“5s” attribute in the
animation tag starts the animation five seconds after the clip begins to play.

For More Information: See “Binary and Unary Tags” on page 199
for the basics of modifying a clip source tag to include other
SMIL elements.

In a Parallel Group

Because animations function like clip source tags, you can place them in
parallel groups with other clips, as shown in the next example:

<par>
 <video.../>
 <textstream.../>
 <animate ...animation for any SMIL element.../>
</par>

In this case, the animation might apply to a clip in the same parallel group, or
to any other element in the file. The animation plays only while its <par>
group is active, however, and non-interactive timing attributes in the
animation tag are relative to the start of the <par> group. For example, a
begin=“10s” attribute in the animation tag starts the animation 10 seconds
after the group becomes active.

In a Sequence

Although not as common as the preceding cases, an animation can also be
part of a sequence as shown here:

<seq>
 <video ... fill=”hold”/>
 <animate ...animation for the preceding clip.../>
</seq>
421

RealNetworks Production Guide
Although a sequential animation can affect any SMIL element, it typically
targets the preceding clip. Because the animation plays only when the
preceding clip finishes, that clip typically uses fill=“hold” to keep it from
disappearing when it ends playback. Non-interactive timing attributes in the
animation tag are relative to the end of the preceding clip. For example, a
begin=“3s” attribute in the animation tag starts the animation three seconds
after the preceding clip finishes.

SMIL Timing with Animations

Because animations function like clip source tags, you can use SMIL timing
attributes to control when animations start, and how long they last. The
following are the most common timing attributes used with animations:

• begin

The begin attribute, which is described in “Setting Begin and End Times”
on page 316, controls when the animation starts, relative to the group or
clip that contains the animation. If you do not use a begin value, the
animation starts as soon as the clip or group that contains it becomes
active. You can also use advanced begin times as described in Chapter 14 to
start an animation when the screen pointer moves over a clip, for example.

• dur or end

The dur or end attribute controls how long the animation lasts. As with
any SMIL element, the end attribute works with begin to set a total
playback time. For more information, see “Setting Durations” on page
319, as well as “Choosing end or dur” on page 319.

• fill

The effects of an animation reset as soon as the animation’s duration
elapses unless you use a fill attribute. If the animation is in a <par> group
and you use fill=“freeze”, for example, the animation holds its final
appearance until the group ends. The fill attribute is described in “Setting
a Fill” on page 329.

• repeatCount or repeatDur

You can make an animation replay several times with repeatCount or
repeatDur. (The SMIL 1.0 repeat attribute does not work with animations.)
A repeating animation can also grow with each iteration. When widening
a region, for example, you can make the region increase a certain amount
422

CHAPTER 17: Animations
on each repetition. The attributes for making animations repeat are
described in “Repeating an Element” on page 325.

Simultaneous Animations

Several animations can occur at the same time during a presentation, as long
as they do not conflict. You cannot increase and decrease a region’s width at
the same time, for example. But you can decrease its width, increase its height,
move its left offset, and change its background color simultaneously by using
several <animate/> tags that are active at the same time.

Creating Basic Animations
The <animate/> tag is the most versatile animation tag. You can use it to alter
element sizes, positions, colors, and sound levels. The following table lists the
attributes that you use to define animations with the <animate/> tag. Keep in
mind, too, that animation tags typically use SMIL timing attributes, as
described in “SMIL Timing with Animations” on page 422.

<animate/> Tag Attributes

Attribute Value Function Reference

accumulate none|sum Makes a repeating animation build
with each iteration.

page 434

additive replace|sum Adds the animation value to the
existing value.

page 434

attributeName attribute_name Selects the attribute to animate. page 424

by pixels|percentage|
color_value

Animates the element by a certain
amount. Do not use with to.

page 429

calcMode discrete|linear|
paced

Controls the f low of an animation. page 431

from pixels|percentage|
color_value

Sets a starting point for the
animation. Use with to or by.

page 428

targetElement ID Identifies the tag that contains the
animated attribute.

page 424

to pixels|percentage|
color_value

Sets an end point for the animation.
Do not use with by.

page 428

values pixels|percentage|
color_value

Defines a list of animation values.
Not used with from , to, or by.

page 430
423

RealNetworks Production Guide
Selecting the Element and Attribute to Animate

Using the targetElement attribute, you specify the ID of the SMIL element you
want to animate. Using attributeName you select a specific attribute within
that element. To animate a region’s width, for example, you identify the region
and its width attribute through an <animate/> tag in the SMIL body, as shown
in the following example:

<smil xmlns=“http://www.w3.org/2001/SMIL20/Language”>
 <head>
 ...
 <region id=“video_region” width=“320” height=“240”/>
 ...
 </head>
 <body>
 ...
 <animate targetElement=”video_region” attributeName=”width” .../>
 </body>
</smil>

When the animation is within a clip source tag, attributeName is required, but
targetElement is not necessary. In the following example, the <animate/> tag
falls within the clip source tag. The <animate/> tag does not therefore need a
targetElement attribute to select the video clip for animation:

<video ...>
 <animate attributeName=”...” .../>
</video>

Animating Window Attributes

The following table describes the attributes that you can animate in <root-

layout/> and <topLayout> tags. That is, you can use any of the following as
values for attributeName when targetElement identifies an ID in a <root-layout/>
424

CHAPTER 17: Animations
or <topLayout> tag. By animating these attributes, you can change the window
size or alter its color.

Animating Region Attributes

The next table lists all the attributes that you can animate in <region/> tags. In
other words, you can use any of the following as values for attributeName when
targetElement identifies a region ID. By animating these attributes, you can
change a region’s size, move the region around a window, alter its color, or
change the volume of a playing clip.

<root-layout/> and <topLayout> Attribute Values You Can Animate

Attribute Effect Reference

backgroundColor Modifies the window’s background color. You could
change the window’s background color from black to
white midway through a presentation, for example.

page 292

height Modifies the window height. You can animate this
attribute along with width to change the
presentation’s display size.

page 278

width Alters the window’s width. You can animate this
attribute along with height to change the
presentation’s display size.

page 278

Region Attribute Values You Can Animate

Attribute Effect Reference

backgroundColor Modifies the region’s background color. You could
change the region’s background color from black to
white midway through a presentation, for example.

page 292

bottom Changes the region’s bottom offset. Animating this
attribute can make the region taller or shorter, as well
as move it vertically.

page 283

height Modifies the region height. You can animate this
attribute along with width to change a clip’s size.

page 283

left Changes the region’s left offset. Animating this
attribute can change the region’s width, or move the
region horizontally.

page 283

regionName Moves a clip from region to region. page 282

right Changes the region’s right offset. Animating this
attribute can make the region wider or narrower, as
well as move it horizontally.

page 283

 (Table Page 1 of 2)
425

RealNetworks Production Guide
Tips for Animating Regions

• An attribute does not have to be explicitly declared to be animated. You
can animate the region’s right attribute, for instance, even if that attribute
is not defined in the <region/> tag.

• By animating the left, right, top, or bottom attributes, you can move the
region around the <root-layout/> or the <topLayout> area. You can even
move part or all of the region out of the display area. The region and any
clips displaying in it are truncated at the window borders, however.

• If the animated region is a subregion (a region contained within another
region), it will not display outside of the containing region. So if you
move the subregion outside of its containing region, the subregion is
truncated at the containing region’s borders.

• If you move a region over another region, the regions’ z-index values
determine which region appears in front. You can also animate the z-index
values to change this stacking order.

Note: If region A appears in front of region B, you cannot
animate a subregion in region B so that it appears in front of
region A. For more information on subregion z-index values,
see page 295.

• A region’s fit attribute affects how a clip displays as a region’s height or
width changes. For more on fit, see “Fitting Clips to Regions” on page 303.

• When you animate the size of a clip that includes a hot spot hyperlink, the
link expands or contracts with the clip if the hyperlink has no coords

soundLevel Adjusts a clip’s sound level. You can animate this
attribute to fade the clip’s audio in or out.

page 294

top Changes the region’s top offset. Animating this
attribute can make the region taller or shorter, as well
as move it vertically.

page 283

width Alters the region’s width. You can animate this
attribute along with height to change a clip’s size.

page 283

z-index Changes the region’s stacking order. You can animate
this attribute to bring one region in front of another
region.

page 290

Region Attribute Values You Can Animate (continued)

Attribute Effect Reference

 (Table Page 2 of 2)
426

CHAPTER 17: Animations
values, or its coordinates are defined with percentage values. Although the
link does not change size if it is defined with pixel values, it is truncated if
the region boundaries overlap the hot spot boundaries.

For More Information: See “Defining Hot Spots” on page 364 for
more on creating hot spots.

• You cannot animate attributes in <regPoint> or <transition> tags.

Animating Clip Attributes

The following table lists all the attributes that you can animate in clip source
tags. That is, you can use any of the following as values for attributeName when
targetElement identifies a tag such as <video/>, , or <ref/>.

Clip Attribute Values You Can Animate

Attribute Effect Reference

backgroundColor Modifies the background color of the region playing
the clip. You could change the color from red to blue
midway through a presentation, for example.

page 296

rn:background
Opacity

Modifies the opacity in a clip’s background
transparency. You could make the clip more opaque,
for example.

page 221

bottom Changes the clip’s bottom offset from its playback
region. Animating this attribute can make the clip
taller or shorter, as well as move it vertically.

page 296

color Changes the color of a <brush/> object. page 211

height Modifies the clip’s height. You can animate this
attribute along with width to change a clip’s size.

page 296

left Changes the clip’s left offset. Animating this
attribute can make the clip narrower or wider, as well
as move it horizontally.

page 296

rn:mediaOpacity Turns opaque areas in the clip transparent. By
animating this attribute, you can make the clip blend
in with the region background color.

page 221

right Changes the clip’s right offset. Animating this
attribute can make the clip narrower or wider, as well
as move it horizontally.

page 296

top Changes the clip’s top offset. Animating this
attribute can make the clip taller or shorter, as well as
move it vertically.

page 296

 (Table Page 1 of 2)
427

RealNetworks Production Guide
Tips for Animating Clip Source Tags

• An attribute does not have to be explicitly declared. You can animate a
width attribute, for example, even if it is not explicitly defined in a clip
source tag

• Animating a size or position attribute (such as width or top) in a clip
creates or modifies a single-use subregion that holds the clip. Therefore,
the points about animated regions described in “Tips for Animating
Regions” on page 426 apply to these types of clip animations.

For More Information: The section “Defining Single-Use
Subregions” on page 296 explains these types of subregions.

• An animated clip cannot display outside of its playback region. To move a
clip anywhere within the <root-layout/> or <topLayout> area, animate the
main region that contains the clip, rather than the clip itself.

Animating Hot Spot Attributes

An animation tag can select the coords attribute of an <area/> tag to change
the shape of a hot spot hypertext link. For information on the <area/> tag and
the coords attribute, see “Using the <area/> Tag” on page 362.

Defining Simple Animation Values

Three animation attributes, to, by, and from, provide a simple means of
defining where an animation starts and stops. Use either the to or the by
attribute, but not both, to determine the animation end point. With either of
these attributes, you can use the optional from attribute to change the
animation’s starting point.

Animating an Attribute to a Certain Point

The to attribute defines the animation’s end point. It takes a value of the type
appropriate for the animated attribute. When animating a layout attribute,

width Alters the clip’s width. You can animate this attribute
along with height to change a clip’s size.

page 296

z-index Changes the clip’s stacking order. You can animate
this attribute to bring one clip in front of another.

page 296

Clip Attribute Values You Can Animate (continued)

Attribute Effect Reference

 (Table Page 2 of 2)
428

CHAPTER 17: Animations
for example, use a pixel or percentage value, either positive or negative. When
animating a color, use a color name or value. For example, suppose that you
have defined this region:

<region id=“video_region” width=“320” height=“240” backgroundColor=”green”/>

You could change the background color to yellow over the course of five
seconds with an animation tag like the following:

<animate targetElement=”video_region” attributeName=”backgroundColor” to=”red”
dur=”5s”/>

Using the to attribute, you could also animate the region’s size or placement.
When it becomes active, the following <animate/> tag expands the region’s
width to 380 pixels over the course of three seconds:

<animate targetElement=”video_region” attributeName=”width” to=”380” dur=”3s”/>

If you do not include a from attribute, the animation starts at the value
specified in the target element tag. In the preceding example, the animation
starts at the region’s normal width of 320 pixels. If you specify a from value,
though, the region expands or contracts to that size instantly when the
animation becomes active. With the following animation, the region first
contracts to half its defined size, then grows to 380 pixels over five seconds:

<animate targetElement=”video_region” attributeName=”width” from=”160”
to=”380” dur=”5s”/>

Animating an Attribute by a Certain Value

The by attribute defines a certain value by which the animation progresses.
Use it to animate sizes or positions, but not colors. The by attribute can take a
pixel or a percentage value, either positive or negative. Suppose that you want
to expand the width of the following region:

<region id=“video_region” width=“320” height=“240”/>

When it becomes active, the following <animate/> tag expands the region’s
width by 30 pixels to a final width of 350 pixels:

<animate targetElement=”video_region” attributeName=”width” by=”30” dur=”3s”/>

Because no from value is specified, the animation starts with the region’s
defined width. If you specified a different from value, the region would expand
or contract to that size instantly when the animation became active.
429

RealNetworks Production Guide
Tips for Defining Simple Animation Values

• By default, an animation flows smoothly over the course of its duration.
But you can use calcMode=“discrete” to make the animation jump from its
starting point to its stopping point. See “Controlling How an Animation
Flows” on page 431 for more information.

• When animating a layout attribute, you can use a pixel value for the to or
by attribute even if the region or subregion is defined with percentages,
and vice versa.

• You can use negative pixel or percentage values when animating a size or a
position. For example, animating a region width with by=“-25%” shrinks
the region to three-quarters of its normal size. Specifying by=“-40” for a
region’s left attribute moves the region 40 pixels to the left, whereas using
by=“40” moves the region 40 pixels to the right.

• Not all negative values are useful. For example, using a negative value with
the to attribute when animating a size (such as to=“-25%” or to=“-44” when
animating a region width) causes the element to disappear completely.

Defining a Range of Animation Values

Using a values list, you can animate an attribute through multiple values. This
lets you define animations that are more complex than those possible with the
to, by, and from attributes. In the following example, a values attribute
animates a region’s width to four different sizes over 15 seconds:

<animate targetElement=”video_region” attributeName=”width” dur=”15s”
values="58;150;96;110"/>

Tips for Defining a Values List

• Enclose the entire values list in double quotation marks.

• You can include spaces before or after a semicolon that separates values,
but spaces are not necessary.

• You do not need to add a semicolon after the last value.

• As with the to and by attributes, you can specify negative pixel or
percentage values when animating sizes and placements.

• The animation always proceeds in order from the first value to the last
value. The first value is applied when the animation activates. The
animation reaches the last value by the end of its duration.
430

CHAPTER 17: Animations
• In a values list, use values appropriate to the animated attribute. When
animating a region, for example, use percentages, pixels, or a mix of both:

values=”25%;50%;380”

• You can use a values list to animate colors. List either color names or color
codes, as in values=“blue;green;#3FD233;rgb(255,12,192)”.

• A list with only two values is equivalent to using the from and to attributes.
For example, values=“58;150” functions the same as from=“58” and
to=“150”.

Controlling How an Animation Flows
The calcMode attribute, which works with the values, to, and by attributes,
controls how the animation flows from point to point. It has three possible
values, as described in the following table.

Jumping from Value to Value

The discrete value for calcMode causes the animation to jump from point to
point in the values list. For example, the following tag animates a region’s
width to four values over the course of eight seconds:

<animate targetElement=”video_region” attributeName=”width” dur=”8s”
values="50;75;150;100" calcMode=”discrete”/>

When the animation begins, the region’s width is set to 50 pixels. At two
seconds, the width jumps up to 75 pixels. At four seconds, it jumps up to 150
pixels. And at six seconds, it jumps down to 100 pixels, staying at that size for
the remaining two seconds of the duration. Note that the last value is reached

calcMode Attribute Values

Value Function Reference

discrete Makes the animated element jump from value to value. page 431

linear Causes the animated element to flow smoothly from value to
value, with the movement from each value taking an equal
amount of time. This is the default value for <animate/> and
<animateColor/>.

page 432

paced Makes the animated element f low smoothly from value to
value, with the movement evenly paced throughout the entire
animation. With to and by, this functions the same as linear.
This is the default value for <animateMotion/>.

page 432
431

RealNetworks Production Guide
at six seconds, rather than at the end of the eight-second duration. This makes
each value active for an equal stretch (2 seconds) of the 8-second duration.

The calcMode=“discrete” value also works with the to and by attributes to make
the animation jump to its ending point. In the following example, the region
width stays at 160 pixels through the first three seconds of the animation,
then jumps to 320 pixels for the last three seconds:

<animate targetElement=”video_region” attributeName=”width” from=”160”
to=”320” calcMode=”discrete” dur=”6s”/

Moving Linearly from Point to Point

The following animation uses the default value calcMode=“linear” to animate a
region’s width between four points over the course of 9 seconds:

<animate targetElement=”video_region” attributeName=”width” dur=”9s”
values="50;75;200;100" calcMode=”linear”/>

When the animation begins, the region’s width is set to 50 pixels. It then
begins to expand, reaching 75 pixels at three seconds. By six seconds, the
width has grown to 200 pixels. It then begins to contract, reaching 100 pixels
at nine seconds. So in contrast to the calcMode=”discrete” example in the
preceding section, the last value in this calcMode=”linear” example is reached at
the very end of the animation duration.

The speed of each segment in this animation increases with the distance
between points. Notice that the distance from the first to the second point is
25 pixels, whereas the distance from the second to the third point is 125
pixels. Because each point-to-point expansion or contraction takes an equal
amount of time, the speed of movement from the first to the second point is
slower than the speed of movement from the second to the third point.

Flowing at an Even Pace

If you use calcMode=“paced”, movement flows smoothly over the course of the
entire animation. When the following animation starts, the region width is 50
pixels. The region then expands at an even pace to 150 pixels before
contracting at the same pace to 100 pixels:

<animate targetElement=”video_region” attributeName=”width” dur=”6s”
values="50;150;100" calcMode=”paced”/>

Because the animation is paced, the distance between points in the values list
affects how long each phase takes. The distance of the expansion phase is 100
432

CHAPTER 17: Animations
pixels (150 - 50), whereas the distance of the contraction phase is 50 pixels
(150 - 100). The expansion therefore takes twice as long as the contraction.
Because the animation lasts 6 seconds, the expansion takes 4 seconds, while
the contraction takes 2 seconds.

Note that when you use calcMode=“paced”, using more than two values has no
effect if all values make the animation flow in the same direction. For
example, consider the following attributes:

values="50;75;90;100;125;150" calcMode=”paced”

Each value in the list above is greater than the preceding value. The animation
therefore flows continuously in a positive direction. With the paced mode,
though, only the first and last values will affect the speed. (This is not true
with the linear value, however.) Hence, the preceding example functions the
same as the following:

values="50;150" calcMode=”linear”

Tip: When using only two values, use calcMode=“linear” , which
is slightly more efficient with computer CPU than
calcMode=“paced”.

Multiple values affect a paced animation only when they reverse the
animation’s direction. In the following example, the animation f lows
positively from the first to the second point, negatively from the second to the
third point, and so on. Each value therefore affects the animation’s
appearance:

values="50;90;75;125;100;150" calcMode=”paced”

Creating Additive and Cumulative Animations
As summarized in the following table, the accumulate and additive attributes
let you create animations that build through repeating cycles.

Additive and Cumulative Attributes

Attribute Value Function Reference

accumulate none|sum Makes a repeating animation build
with each iteration.

page 434

additive replace|sum Adds the animation value to the
existing value.

page 434
433

RealNetworks Production Guide
Adding Animation Values to a Base Value

Using additive animation, you can animate target attributes by increments,
rather than by absolute values. You can use additive animations for sizes and
placements, but not colors. Although additive animations are useful on their
own, they are more powerful when combined with cumulative animations,
which the next section describes. To illustrate additive animation, consider the
following region:

<region id=“video_region” width=“320” height=“240”/>

Suppose that you want to add 60 pixels to the width of this region in three
steps, each step adding 20 pixels to the width. As described in the preceding
sections, you can do this by specifying the exact width values in a values list:

<animate targetElement=”video_region” attributeName=”width” dur=”3s”
values="340;360;380” calcMode=”discrete”/>

Or, you could use additive=“sum” to tell RealPlayer to treat each specified value
as an increment to add to the original width value:

<animate targetElement=”video_region” attributeName=”width” dur=”3s”
values="20;40;60” additive=”sum” calcMode=”discrete”/>

The preceding example tells RealPlayer to add 20 pixels to the region’s original
width, then add 40 pixels to the original width, then add 60 pixels to the
original width. Note that each list value is added to the target region’s original
width, not to the animated width created by the preceding list value.

Additive animation also works with the from and to values, but it provides
little benefit. For example, you could add 20 pixels to a region width with
these attributes:

from=”0” to=”20” additive=”sum”

But it’s simpler in this case to use just the by attribute:

by=“20”

Making Animations Repeat and Grow

A cumulative animation uses a repeatCount or repeatDur attribute to repeat the
animation. It also uses accumulate=“sum” to increase or decrease the animated
value with each iteration. You can use cumulative animations for sizes and
placements, but not colors. To demonstrate cumulative animation, consider
the following region:

<region id=“image_region” width=“180” height=“180”/>
434

CHAPTER 17: Animations
A simple cumulative animation could use the by attribute to increase the
region width on each iteration of an animation. The following animation
repeats four times. On each iteration, the region’s width increases by 16 pixels:

<animate targetElement=”image_region” attributeName=”width” dur=”2s”
by="16” accumulate=”sum” repeatCount=”4” calcMode=”discrete”/>

The by attribute always adds a certain amount to the target value, making it
naturally additive. When using a values list with a cumulative animation,
though, you need to include additive=“sum” as described in “Adding Animation
Values to a Base Value” on page 434. Consider the following example:

<animate targetElement=”image_region” attributeName=”width” dur=”2s”
values="5;20” additive=”sum” accumulate=”sum” repeatCount=”2”
calcMode=”discrete” fill=”freeze”/>

In this example, each repetition lasts two seconds, the calcMode value is
discrete, and there are two values (5 and 20) in the values list. These attributes
cause the animation to behave as follows:

• When the animation starts, the region width instantly grows by 5 pixels.
Because the region was defined to have a 180 pixel width, its new width is
185 pixels.

• One second after the animation starts, the region width grows to 200
pixels, 20 pixels more than its original width. Note that the 20 pixels are
added to the original width, not to the preceding animated width. At this
point, therefore, the region is 15 pixels wider than it was one second
earlier.

• At two seconds, the animation repeats. Because the animation is
cumulative, the region does not reset to its original width. Instead, it
grows by an additional 5 pixels to a width of 205 pixels.

• At three seconds, the region grows 20 pixels wider than its width at the
start of the second repetition. It therefore ends at a final width of 220
pixels.
435

RealNetworks Production Guide
Using the Specialized Animation Tags
The following sections describe the specialized animation tags, which are
variations of the <animate/> tag. You should understand how the <animate/>
tag works before using the specialized tags summarized in the following table.

For More Information: For information about the <animate/> tag
and the various attributes you can use in the specialized
animation tags, see “Creating Basic Animations” on page 423.

Animating Colors

The <animateColor/> tag works like an <animate/> tag, but is limited to color
animations only. Although you can perform any color animation with an
<animate/> tag, you may find it useful to use <animateColor/> to distinguish
color animations from other animations. The following table lists the clip and
region color properties you can animate. In other words, you can use the
following attributes as values for attributeName in an <animateColor/> tag.

The following example changes a region’s background color to red:

<animateColor targetElement="image_region" attributeName="backgroundColor"
to="red" begin="1s" dur="12s" fill="freeze"/>

You can also animate an element through several colors with a values list, as
shown in the following example:

<animateColor targetElement="image_region" attributeName="backgroundColor"
values="red;blue;yellow" calcMode=”discrete” .../>

Specialized Animation Tags

Tag Function Reference

<animateColor/> Changes a color value for a region or clip. page 436

<animateMotion/> Moves an element both horizontally and vertically. page 437

<set/> Sets an attribute to a new value instantly. page 438

attributeName Values Used in the <animateColor/> Tag

Attribute Target Effect Reference

backgroundColor clip.
region,
window

Modifies a root-layout, secondary
wndow, or region background
color.

page 292

color clip Changes a <brush/> object color. page 211
436

CHAPTER 17: Animations
When you use calcMode=“discrete” , only the specified colors display. If you use
paced or linear as the calcMode value, though, intermediate colors display. The
paced and linear modes create subtle differences when used with colors.
Suppose you specify the following values:

values=“#FFDD11;#FFDD22;#FFDDFF”

With the paced mode, the animation flows smoothly from #FFDD11 to #FFDDFF.
With the linear mode, though, the first half of the animation flows from
#FFDD11 to #FFDD22. The second half of the animation flows from #FFDD22 to
#FFDDFF. Because the first half covers fewer color values, the color changes
appear to occur more slowly than in the second half.

For More Information: For more on calcMode, see “Controlling
How an Animation Flows” on page 431. Appendix C describes
SMIL color values.

Tip: Color animations are not additive or cumulative, so do not
use the by, additive , or accumulate attribute when animating a
color with <animateColor/> or <animate/>.

Creating Horizontal and Vertical Motion

An <animateMotion/> tag moves an element both horizontally and vertically.
Although you can move an element both horizontally and vertically by using
two <animate/> tags, it’s often simpler to use a single <animateMotion/> tag,
which has the following features and restrictions that differentiate it from the
<animate/> tag:

• The <animateMotion/> tag does not use an attributeName attribute. The tag
always selects the upper-left corner of the element defined with the
targetElement attribute.

• The <animateMotion/> tag can use a values list, or the to, by, and from
attributes. You must always specify value pairs, the two values separated
by a comma. The first value in the pair is the horizontal coordinate (x-
coordinate), and the second value is the vertical coordinate (y-coordinate).
The following are sample values:

• to=“120,180”

• by=“75%,15%”

• values=“60,120;80,150”
437

RealNetworks Production Guide
• The default value for calcMode is paced, rather than linear. This produces a
smoother flow of motion when you animate an element through several
points. For more on calcMode, see “Controlling How an Animation Flows”
on page 431.

• Although you can use <animateMotion/> to move a clip either horizontally
or vertically, the <animate/> tag uses less CPU power on the RealPlayer
computer to create this movement. It’s recommended, therefore, to use
<animateMotion/> only for diagonal movement.

The following example moves the upper-left corner of the targeted region to
the three points defined in the values list. Because calcMode=“discrete” is used,
the region will jump from point to point rather than flow smoothly:

<animateMotion targetElement="image_region" values="180,180;60,340;125,95"
calcMode="discrete" begin="7s" dur="5s" fill="freeze"/>

Setting an Attribute Value

The <set/> tag changes an attribute to a specific value until the tag is no
longer active. It is useful, for example, to change a region background color
while a clip plays. You can use this tag with any attribute that you can animate
with the <animate/> tag. The <set/> tag can therefore change element sizes,
positions, and colors. It uses fewer animation attributes than <animate/>, as
summarized in the following table.

A <set/> tag can use the basic SMIL timing attributes of begin, dur, and fill. The
following example shows a <set/> tag changing a region background color.
The region color changes instantly when the animation becomes active, then
resets to its previous value after 30 seconds:

<set targetElement=”video_region” attributeName=”backgroundColor” to=”blue”
dur=”30s”/>

<set/> Tag Attributes

Attribute Value Function Reference

attributeName attribute_name Selects the attribute to animate. page 424

targetElement ID Identifies the tag that contains the
animated attribute.

page 424

to pixels|percentage|
color_value

Sets the new attribute value. page 428
438

CHAPTER 17: Animations
If the <set/> tag does not define a duration explicitly, the animation lasts as
long as the <set/> tag is active. If the <set/> tag is associated with a clip tag, for
instance, the animation lasts until the clip’s duration expires. In the following
example, the animation expires when the image’s 10-second duration elapses,
even though the image still appears onscreen because of its fill=”freeze” value:

 <set targetElement=”video_region” attributeName=”backgroundColor” to=”blue”/>

Tip: To disassociate the <set/> tag from the clip’s timing
attributes, place the <set/> tag and the clip source tag in a
parallel group, as described in “Animation Tag Placement” on
page 420.

Manipulating Animation Timing
RealPlayer supports SMIL time manipulations for animations (and only
animations). Time manipulations can control the rate of an animation to
make it appear to accelerate or decelerate, for example. A later version of this
guide will explain how to create time manipulations. Currently, you can learn
about time manipulations in the SMIL 2.0 specification:

http://www.w3.org/TR/smil20/smil-timemanip.html
439

RealNetworks Production Guide
440

C H A P T E R
18

 Chapter 18: SWITCHING
SMIL switching gives you a powerful way to provide different clips
that RealPlayer chooses between based on certain criteria. For
example, you can have each RealPlayer select an audio track based
on each viewer’s language preference. This chapter explains how to
set up switch groups to stream different clips to different audiences.

Understanding Switching
SMIL switching is a powerful means to tailor presentations for different
audiences without making viewers choose which presentation they wish to
view. In cases such as language choice, SMIL switching occurs automatically
based on a preference the viewer has set in RealPlayer. In other cases, such as
available bandwidth or monitor size, switching is based on an attribute that
the viewer does not control. In all cases, however, RealPlayer automatically
makes the choice without input from the viewer.

Tip: When you want viewers to choose options themselves, use
an <excl> tag, not a <switch> tag. For more on the <excl> tag, see
“Creating an Exclusive Group” on page 261.

Note: The following sections demonstrate switching with clips
recorded in different languages. Keep in mind, though, that
the same principles apply to switching through other criteria,
such as bandwidth or monitor size.

Creating a Switch Group

A switch group starts with a <switch> tag and ends with a </switch> tag.
Between these tags, you list multiple options, such as multiple clip source
tags, that each contain a test attribute. RealPlayer evaluates the options in the
order you list them, choosing the first option that it can play. For example, in
441

RealNetworks Production Guide
the following simple <switch> group, the systemLanguage test attributes cause
RealPlayer to choose one of two audio clips based on its language preference:

<switch>
 <audio src=”french.rm” systemLanguage=”fr”/>
 <audio src=”german.rm” systemLanguage=”de”/>
</switch>

Only RealPlayers in which the viewer has selected French (fr) as the language
preference will choose the first clip. Only RealPlayers in which the viewer has
selected German (de) as the language preference will choose the second clip. A
RealPlayer with another language preference will not play either clip: it simply
ignores the clips in the <switch> group and proceeds to the next part of the
presentation. Hence, a RealPlayer either plays just one clip from a <switch>
group, or it plays no clip. But it never plays more than one option.

Adding a Default Option to a Switch Group

To reach the widest audience of viewers, a <switch> group needs to have a
default option. Without this option, certain RealPlayers may not play any clips
in the group. A default option must satisfy these criteria:

• The default option must not include a test attribute.

Any RealPlayer will choose an option that does not include a test
attribute. Hence, any RealPlayer that did not choose an option with a test
attribute will choose the option without the test attribute.

• The default option must be the last option in the <switch> group.

RealPlayer always evaluates options in the order they are listed, playing the
first suitable option it finds. If you list a default option before options
that include test attributes, no RealPlayer will ever evaluate the test
attributes of the options following the default option.

The following example modifies the preceding example to add an English-
language clip as the default choice:

<switch>
 <audio src=”french.rm” systemLanguage=”fr”/>
 <audio src=”german.rm” systemLanguage=”de”/>
 <audio src=”english.rm”/>
</switch>

Note that the English-language clip is listed last and does not include a
systemLanguage test attribute, making it the default. In this example, any
442

CHAPTER 18: Switching
RealPlayer with a preference set to a language other than French or German
will choose the English clip. For example, all RealPlayers with a language
preference for Swedish, Korean, English, and so on choose the English-
language clip.

Using Inline Switching

It is not always necessary to use a <switch> tag for switching. You can also use
inline switching, which adds test attributes to clip source tags in a <par> or
<seq> group. When RealPlayer encounters a test attribute, it evaluates the
attribute to determine if it should play or skip the clip. In the following
example of a parallel group, RealPlayer always plays the Flash clip, and then
chooses the French or German audio clip based on its language preference:

<par>
 <ref src=”cartoon.swf” region=”playback”/>
 <audio src=”french.rm” systemLanguage=”fr”/>
 <audio src=”german.rm” systemLanguage=”de”/>
</par>

Choosing Inline Switching or a Switch Group

Although useful in many situations, inline switching cannot provide a default
option, making it less powerful than a <switch> group. Consider the following
example, which attempts to add a default English-language clip to the
preceding example:

<par>
 <!-- This is NOT a good example of switching. -->
 <ref src=”cartoon.swf” region=”playback”/>
 <audio src=”french.rm” systemLanguage=”fr”/>
 <audio src=”german.rm” systemLanguage=”de”/>
 <audio src=”english.rm”/>
</par>

The parallel group shown above will work for every RealPlayer, except those
with a French or German language preference! For instance, a RealPlayer with
a language preference for French plays the Flash (.swf) clip, the French
RealAudio clip, and the English-language clip, which has no systemLanguage
attribute that ties it to a language preference. Hence, the viewer hears an
incomprehensible blend of French and English.
443

RealNetworks Production Guide
Only a <switch> tag causes RealPlayer to evaluate all options as a group and
choose only one option. The following example illustrates the correct way to
add the default, English-language choice to the parallel group shown above:

<par>
 <!-- This is a good example of switching. -->
 <ref src=”cartoon.swf” region=”playback”/>
 <switch>
 <audio src=”french.rm” systemLanguage=”fr”/>
 <audio src=”german.rm” systemLanguage=”de”/>
 <audio src=”english.rm”/>
 </switch>
</par>

Available Test Attributes

The following table lists the test attributes available for switching. These
attributes are described in detail in the remainder of this chapter.

Tips for Writing Switch Groups

• The <switch> tag must fall within the <head> or <body> section of your
SMIL file. In other words, the <smil>, <head>, or <body> tags cannot fall
within a <switch> tag.

Switch Attributes

Attribute Value Tests For Reference

systemAudioDesc on|off descriptions preference page 450

systemBitrate bits_per_second total available bandwidth page 448

systemCaptions on|off captions preference page 450

systemComponent component component or version page 455

systemCPU CPU_type computer CPU type page 451

systemLanguage language_code language preference page 446

systemOperatingSystem OS_name computer operating system page 452

systemOverdubOrSubtitle overdub|
subtitle

overdubbing or subtitle
preference

page 447

systemRequired prefix namespace support page 455

systemScreenDepth 1|4|8|24|32 monitor color bit depth page 454

systemScreenSize heightXwidth monitor size page 453
444

CHAPTER 18: Switching
• You can use a <switch> tag in the header section to let RealPlayer choose
between alternative layouts. See “Example 3: Media Playback Pane Resized
for Captions” on page 464 for an example of modifying the layout to
accommodate system captions.

• You can use a <switch> tag to switch between alternative <seq>, <par>, or
<excl> groups. In these cases, you add the test attributes to the group tags
instead of to the clip source tags.

• You can use more than one test attribute in a tag. For example, you might
test for monitor size and color depth at the same time. When there are
multiple test attributes, RealPlayer must satisfy all the attribute values
before it chooses the clip. Alternatively, you can nest <switch> tags to
achieve the same results. See “Multiple Test Attributes” on page 458 for
examples of how to use both methods.

• In most cases, you’ll want to create a default value so that every RealPlayer
will find an option that it can play. In some cases, though, you may not
want a default. If you’re creating a group that switches between clips
streaming at 300 Kbps, 200 Kbps, and 100 Kbps, for example, you may
not want to include a default choice. That way, RealPlayers connected
through dialup modems don’t request any of the clips.

• In cases where you do not want certain RealPlayers to choose an option,
you do not necessarily have to leave the default option out. Instead, you
can use the default option to display a graphic or RealText clip informing
viewers of the reason their RealPlayers cannot play the presentation.

• To switch between clips that use SMIL hyperlinks, create the links with
<area/> tags inside the clip source tags, rather than with <a> and tags
around the clip tags. Add the test attribute to the clip tag, as shown here:

<video src=”video1.rm” systemLanguage=”fr” ...>
 <area href=”http://www.example.com” .../>
</video>

For More Information: For more on the <area/> tag, see “Using
the <area/> Tag” on page 362.

• You can switch between entirely different SMIL files, as shown in “Full
SMIL File Switching” on page 467. In some cases, this provides an easier
way to create complex presentations than by writing a single SMIL file
with multiple <switch> groups.
445

RealNetworks Production Guide
Switching Between Language Choices
When source clips are in different languages, use a test attribute of
systemLanguage in the clip source tag or group tag. The following example
shows a video slideshow with separate audio narrations in French, German,
Spanish, Japanese, Korean, and English. Each RealPlayer requests the same
slideshow, but chooses an audio clip based on its language preference
(Tools>Preferences>Content) and its evaluation of the systemLanguage values:

<par>
 <ref src=”seattle_slides.rp”/>
 <!-- select audio based on RealPlayer language preference setting -->
 <switch>
 <audio src=”seattle_french.rm” systemLanguage=”fr”/>
 <audio src=”seattle_german.rm” systemLanguage=”de”/>
 <audio src=”seattle_spanish.rm” systemLanguage=”es”/>
 <audio src=”seattle_japanese.rm” systemLanguage=”ja”/>
 <audio src=”seattle_korean.rm” systemLanguage=”ko”/>
 <audio src=”seattle_english.rm”/>
 </switch>
</par>

The last audio option in the preceding example is the default. Because the last
option does not have a test attribute, a RealPlayer that does not have French,
German, Spanish, Portuguese, Japanese, or Korean set as its preferred
language chooses the English clip.

For More Information: See the examples in “Subtitles and HTML
Pages in Different Languages” on page 460 for more
demonstrations of how to use systemLanguage .

Setting Language Codes

Appendix I lists the codes used as systemLanguage values. In some cases, a
primary language code has variation codes. For instance, es is the primary
code for Spanish, corresponding to Spanish as spoken in Spain. This code has
several variations, such as es-mx for Mexican Spanish and es-pr for Puerto
Rican Spanish. When variation codes are used, RealPlayer uses the following
rules to select a clip:

• A RealPlayer with a preference for a language variation will choose either
the variation code or the primary code, whichever comes first in the
<switch/> group. For example, a RealPlayer with a preference for Mexican
Spanish plays clips designated with es-mx or es. If a clip with the value es
446

CHAPTER 18: Switching
comes first, RealPlayer does not continue to evaluate options to determine
if the es-mx option is present.

• A RealPlayer with a preference for a primary language code will not choose
clips that use variation codes. For example, a RealPlayer with a preference
for Spanish as spoken in Spain chooses only clips designated with es. If
the only choices are es-mx and es-pr, for instance, this RealPlayer does not
choose either option.

If you have different clips for different language variations, list the clip that
corresponds to the primary code as the last option, as shown here:

<switch>
 <audio src=”mexico.rm” systemLanguage=”es-mx”/>
 <audio src=”puertorico.rm” systemLanguage=”es-pr”/>
 <audio src=”defaultspanish.rm” systemLanguage=”es”/>
</switch>

In the preceding example, RealPlayers with a preference for Mexican Spanish
(es-mx) choose the first clip. RealPlayers with a preference for Puerto Rican
Spanish (es-pr) choose the second clip. All other RealPlayers with a preference
for any variation of Spanish choose the last clip. For instance, a RealPlayer
with a preference for Chilean Spanish chooses the es option because its
preferred variation (es-cl) is not listed.

Providing Subtitles or Overdubbing

For clips in foreign languages, RealPlayer viewers can set a preference for
subtitles or overdubbing. The systemOverdubOrSubtitle attribute tests for this
preference, displaying clips based on the viewer’s choice. It can have one of two
values, either overdub or subtitle . Suppose that you have three versions of a
RealVideo clip:

1. an original French version (original.rm)

2. a version dubbed in English (dubbed.rm)

3. the original French version with English subtitles (titled.rm)

You can use systemOverdubOrSubtitle along with systemLanguage in a <switch>
group as shown in the following example:

<switch>
 <!-- Version for RealPlayers with a preference for English and overdubbing. -->
 <video src=”dubbed.rm” systemLanguage=”en” systemOverdubOrSubtitle=“overdub”/>
 <!-- Version for RealPlayers with a preference for English and subtitling. -->
447

RealNetworks Production Guide
 <video src=”titled.rm” systemLanguage=”en” systemOverdubOrSubtitle=“subtitle”/>
 <!-- Version for RealPlayers with a language preference other than English. -->
 <video src=”original.rm”/>
</switch>

In the preceding example, RealPlayers with a preference for English and
overdubbing play the first clip. Any other RealPlayer preferring English plays
the second clip. The original French clip is listed last with no systemLanguage
attribute. This makes it the default played by RealPlayers that prefer French or
another language besides English.

Note: In the preceding example, the second clip does not need
to specify subtitle explicitly. The systemOverdubOrSubtitle
attribute uses only overdub or subtitle as its value. Because the
first clip takes the overdub value, only the subtitle value is left
for the second clip.

Switching Between Bandwidth Choices
To stream different clips to viewers at different connection speeds, use the
systemBitrate test attribute to define options each RealPlayer can choose based
on the total amount of bandwidth it has available. The systemBitrate attribute
takes as a value the approximate bits per second required to stream the whole
presentation. The following sample <switch> tag lists two different RealPix
presentations. The first is for connections that have at least 80 Kbps of
bandwidth. The second is for slower connections, down to 28.8 Kbps modems:

<switch>
 <ref src=”slides1.rp” systemBitrate=”80000”/>
 <ref src=”slides2.rp” systemBitrate=”20000”/>
</switch>

As shown above, list the bandwidth choices from fastest to slowest. RealPlayer
evaluates options in order, selecting the first option it can play. If the 20,000
bps option were first, a RealPlayer with a high-speed connection would choose
it because it is the first viable option. Also ensure that the last option satisfies
the slowest connection speed you want to support. If the last choice is
systemBitrate=”60000” , for example, RealPlayers on modems will not play the
presentation because its bandwidth requirement is too high.

The more complex example below shows three sets of clips. Each <par> tag has
a systemBitrate attribute that lists the approximate bandwidth the clips as a
448

CHAPTER 18: Switching
whole consume. Note that each group uses the same RealText clip, but has
different RealAudio and RealPix clips created for its bandwidth:

<switch>
 <par systemBitrate=”225000”>
 <!--RealPlayers with 225 Kbps or faster connections choose this group-->
 <audio src=”music1.rm”/>
 <ref src=”slides1.rp” region=”images”/>
 <textstream src=”narration.rt” region=”text”/>
 </par>
 <par systemBitrate=”80000”>
 <!--RealPlayers with connections between 80 and 225 Kbps get this group-->
 <audio src=”music2.rm”/>
 <ref src=”slides2.rp” region=”images”/>
 <textstream src=”narration.rt” region=”text”/>
 </par>
 <par systemBitrate=”20000”>
 <!--RealPlayers with connections between 20 and 80 Kbps get this group-->
 <audio src=”music3.rm”/>
 <ref src=”slides3.rp” region=”images”/>
 <textstream src=”narration.rt” region=”text”/>
 </par>
</switch>

For More Information: The table “Maximum Streaming Rates”
on page 46 gives bandwidth guidelines for various network
connections.

Switching with SureStream Clips

With RealAudio or RealVideo clips encoded for multiple bit rates with
SureStream technology, you may or may not need to use the <switch> tag with
a systemBitrate attribute. The following guidelines will help you to make this
decision:

• When the presentation consists solely of a SureStream clip, simply link to
that clip within the SMIL file. The clip then streams at the rate
appropriate for RealPlayer’s connection speed. You do not need to specify
bandwidth choices with a <switch> tag.

• Use the <switch> tag when combining a SureStream clip with other clips
encoded for single bandwidths. The SureStream clip is always used, but
the <switch> group gives RealPlayer options for other clips. The following
449

RealNetworks Production Guide
example illustrates a RealAudio SureStream clip and a choice between two
RealPix presentations built for different bandwidths:

<par>
 <audio src=”soundtrack.rm”/>
 <switch>
 <ref src=”slideshow1.rp” systemBitrate=”47000” region=”images”/>
 <ref src=”slideshow2.rp” systemBitrate=”20000” region=”images”/>
 </switch>
</par>

RealPlayers that have at least 47,000 bits per second of available
bandwidth choose slideshow1.rp. If this slideshow takes 25 Kbps, for
example, these RealPlayers pick a SureStream track from soundtrack.rm
that requires 22 Kbps or less of bandwidth. RealPlayers with between
47,000 and 20,000 bps of available bandwidth choose slideshow2.rp, along
with a SureStream track that keeps the combined clips under 20 Kbps.

For More Information: For more on SureStream, see
“SureStream RealAudio and RealVideo” on page 49. Refer to
“Step 4: Develop a Bandwidth Strategy” on page 45 for
information on targeting certain network connection speeds.

Enhancing Presentation Accessibility
RealPlayer users who are sight- or hearing-impaired can set accessibility
preferences (Contents under Tools>Preferences) that give them audio
descriptions or captions when those options are available. You can match
RealPlayer viewers to these options with the systemAudioDesc and
systemCaptions attributes. Both attributes, which you can use together or
singly, take a value of either on or off. Suppose you have three versions of a
video clip:

1. An original version for viewers with no accessibility preference (video.rm).

2. A version for sight-impaired viewers with a preference for audio
descriptions (video_descriptions.rm). A video with audio descriptions
might consist of a standard video that pauses intermittently while a
separate audio track encoded in the clip describes upcoming scenes.

3. A version for hearing-impaired viewers with a preference for captions
(video_captions.rm). A video with captions might consist of a standard
450

CHAPTER 18: Switching
video that includes encoded captions similar to subtitles, but in the same
language as the video’s audio track.

You can use inline switching with the systemAudioDesc and systemCaptions
attributes as shown in the following example to choose between clips based on
the viewer’s accessibility preference:

<seq>
 <video src=”video_descriptions.rm” systemAudioDesc=”on”/>
 <video src=”video_captions.rm” systemCaptions=”on”/>
 <video src=”video.rm”/>
</seq>

For More Information: See “System Captions Using RealText” on
page 462 for an example of using RealText to provide system
captions.

Switching Based on the Viewer’s Computer
Several <switch> tag attributes—systemCPU, systemOperatingSystem,
systemScreenSize, and systemScreenDepth—let you switch between clips or
groups based on the viewer’s computer hardware or software. This lets you
tailor a presentation’s size or clip types, for example, based on the features of
the machine running RealPlayer.

Switching for CPU Type

The systemCPU attribute lets you switch clips based on the processor for the
RealPlayer computer. This attribute identifies the computer processor but no
other machine attributes, such as the computer’s clock speed, available
memory, or operating system. The following table lists the possible values for
the systemCPU attribute.

systemCPU Attribute Values

Attribute Value Computer Processor Selected

alpha Compaq Alpha processor

arm Unix-based server processor

arm32 Unix-based server processor

hppa1.1 Hewlett-Packard Unix-based server processor

m68k pre-PowerPC Macintosh
 (Table Page 1 of 2)
451

RealNetworks Production Guide
Note: The preceding table lists all systemCPU attribute values
defined for SMIL. This does not mean, however, that
RealPlayer is available for each hardware platform.

Switching for Operating System

The systemOperatingSystem attribute lets you switch clips based on the
operating system running on the RealPlayer computer. This attribute does not
discriminate between various versions of an operating system, however. The
following table lists the values for systemOperatingSystem. The last column
indicates if a version of RealPlayer is available for that operating system. Note,
however, that RealPlayer availability is subject to change.

mips Unix-based server processor

ppc PowerPC Macintosh and Linux

rs6000 IBM Unix-based server processor

unknown unknown processor type

vax DEC VAX running VMS or Unix

x86 Intel chip set for Windows and Linux PCs and servers

systemCPU Attribute Values (continued)

Attribute Value Computer Processor Selected

 (Table Page 2 of 2)

systemOperatingSystem Attribute Values

Attribute Value Operating System Selected RealPlayer?

aix IBM AIX version of Unix yes

beos Be operating system no

bsdi Berkeley Software Design’s version of Unix no

dgux Data General UX version of Unix no

freebsd FreeBSD version of Unix no

hpux HP-UX version of Unix yes

irix Silicon Graphics Irix version of Unix yes

linux Any Linux distribution yes

macos Any Macintosh operating system, including MacOSX yes

ncr NCR network operating system no

nec NEC version of Unix no

netbsd Network BSD version of Unix no
 (Table Page 1 of 2)
452

CHAPTER 18: Switching
Switching for Monitor Size or Color Depth

Two test attributes, systemScreenSize and systemScreenDepth, let you switch
clips based on the size and color capability of the monitor displaying
RealPlayer. They are useful if you have different versions of the same video in
different sizes or different color depths, for example.

Specifying a Monitor Size

The systemScreenSize attribute uses a pixel measurement value in the form
heightXwidth. The value specifies that the monitor displaying RealPlayer must

nextstep NeXT operating system no

nto NTO version of Unix no

openbsd Open BSD version of Unix no

openvms Open VMS no

os2 IBM OS/2 no

osf Open Software Foundation’s version of Unix no

palmos Palm operating system no

qnx QNX Software System’s realtime platform no

rhapsody Macintosh OSX Server no

sco Caldera version of Unix (fomerly Santa Cruz
Operations)

no

sinix Siemens Nixdorf version of Unix no

solaris Sun Solaris version of Unix yes

sunos Sun version of Unix pre-dating Solaris no

unixware Caldera version of Unix (formerly Novell) yes

unknown unknown operating system n/a

win16 Microsoft Windows 16-bit OSes yes

win32 Microsoft Windows 32-bit OSes yes

win9x Microsoft Windows 95/98/ME yes

wince Microsoft Windows CE and PocketPC yes

winnt Microsoft Windows NT/2000/XP yes

systemOperatingSystem Attribute Values (continued)

Attribute Value Operating System Selected RealPlayer?

 (Table Page 2 of 2)
453

RealNetworks Production Guide
be of the given size or larger. The following are common systemScreenSize
values:

Note: You must use a capital “X”. Note, too, that monitor sizes
are commonly referred to in a width-by-height format, such as
640-by-480. With SMIL, though, you must specify height first.

Because a monitor must be at least the specified size for RealPlayer to choose
an option, always list options from the largest to the smallest screen size as
shown above. If you listed systemScreenSize=“480X640” first, for example, all
RealPlayers on standard desktop computers would choose that option because
all standard desktop monitors are at least that size.

Tip: Keep in mind that computer users can generally set their
monitor resolutions differently. Some 17-inch monitors may
have a resolution of 768X1024 for example, while others are set
to 600X800.

Specifying a Color Depth

The systemScreenDepth attribute uses an integer value that specifies the color
bit depth of the monitor. The monitor must have the given bit depth or higher
to play the clip. The following are common systemScreenDepth values:

Because a monitor must have at least the specified color depth for RealPlayer
to choose an option, always list options from the highest bit depth to the
lowest as shown above. If you listed systemScreenDepth=“8” first, for example,
all RealPlayers on standard color monitors would choose that option because
all standard color monitors can display at least 256 colors.

1024X1280 common size for 21-inch monitors or larger

768X1024 common size for 17-inch monitors or larger

600X800 common size for 15-inch monitors or larger

480X640 smallest desktop monitor size in general use

32 millions of colors

24 millions of colors

16 thousands of colors

8 256 colors

4 16 colors

1 black-and-white
454

CHAPTER 18: Switching
Checking Components and Version Numbers
Using the systemRequired and systemComponent attributes, you can define an
element that plays only if RealPlayer (or another SMIL-based media player) is
above a specific version number, or possesses a certain component, such as a
plug-in required to render a clip. The following sections describe how to use
these attributes within SMIL 2.0, and how to use them to provide backward-
compatibility with SMIL 1.0.

Defining Test Attributes in SMIL 2.0

The following abstract example illustrates how systemRequired and
systemComponent attributes work in SMIL 2.0:

<smil xmlns=“http://www.w3.org/2001/SMIL20/Language”
xmlns:prefix=”customizations_namespace”>
 <body>
 <switch>
 <ref systemRequired=”prefix” prefix:systemComponent=”component”
 ...clip to use if the player has the specified component.../>
 <ref ...clip to use if the player does not have the specified component.../>
 </switch>
 </body>
</smil>

The <switch> tag in this example enables RealPlayer to choose between two
clips, the second of which is a default choice that plays if RealPlayer does not
meet the requirements of the first clip.

The Customizations Namespace

The <smil> tag in the preceding example defines a customizations namespace
that is specific to the media player being tested:

xmlns:prefix=”customizations_namespace”

A customizations namespace is required because the systemComponent
attribute values are different for each media player. For example, the
systemComponent value that tests for the version number of RealPlayer is
different from a systemComponent value that tests for the version number of a
different SMIL-based media player. The namespace defines the values that the
media player can expect to encounter for systemComponent .

For More Information: For more on namespaces, see “Using
Customized SMIL Attributes” on page 201.
455

RealNetworks Production Guide
The systemRequired Attribute

The systemRequired attribute takes as a value the prefix for the customizations
namespace. This is necessary because a media player that does not handle a
certain attribute, such as a specific systemComponent value, ignores the
attribute but still plays the element. The systemRequired attribute overrides
this default behavior, making the media player ignore the element entirely if
the player does not recognize the customizations namespace.

The systemComponent Attribute

The systemComponent attribute selects a component or property that
RealPlayer or another media player must possess, such as a certain version
number. The values are specific to each media player.

Note: A later version of this manual will describe components
and properties that you can test for in RealPlayer. Currently,
the primary use of systemComponent is to add SMIL 2.0 features
to a SMIL 1.0 file, as explained in the next section.

Combining SMIL 2.0 with SMIL 1.0

The previous section describes how to use systemComponent and systemRequired
within a SMIL 2.0 environment. This section explains how you can use
systemComponent and system-required (the SMIL 1.0 version of systemRequired)
to create a file that plays as SMIL 1.0 in RealPlayer 7 and RealPlayer 8 (but not
RealPlayer G2), and contains enhanced SMIL 2.0 features for RealOne Player
or later. This lets you add SMIL 2.0 features to existing SMIL 1.0 files, for
instance.

Tip: Because of the many differences between SMIL 1.0 and
SMIL 2.0, RealNetworks does not recommend creating a
complex SMIL file that plays as SMIL 2.0 in RealOne Player or
later and as SMIL 1.0 in RealPlayer 7 and 8. Use this backward-
compatible method only for adding a small number of SMIL
2.0 features to existing SMIL 1.0 presentations. Otherwise,
create separate SMIL 1.0 and 2.0 files.

Testing for the Player Version

To add SMIL 2.0 functionality to a SMIL 1.0 file, you use systemComponent and
system-required to test the player version on each SMIL 2.0 element. This
enables RealPlayer 7 and 8 to ignore the element. The following example
456

CHAPTER 18: Switching
modifies the SMIL 2.0 example in the preceding section, adding the attributes
and values that are specific to testing for the RealPlayer version number:

<smil xmlns=“http://www.w3.org/2001/SMIL20/Language”
xmlns:cv=“http://features.real.com/systemComponent”>
 <body>
 <switch>
 <ref system-required=”cv”
 cv:systemComponent="http://features.real.com/?component;player=6.0.10"
 ...clip for RealOne Player or later to play.../>
 <ref ...clip earlier versions of RealPlayer to play.../>
 </switch>
 </body>
</smil>

In this example, each player has a choice of two clips specified by <ref/> tags.
The first <ref/> tag requires that the player be version 6.0.10 or later (RealOne
Player or later). Earlier versions of RealPlayer choose the second, default
option.

The Customizations Namespace

To test for the RealPlayer version number, you must include the following
namespace. Be sure to use the cv prefix, too. In SMIL 2.0, prefixes are user-
definable. For RealPlayer 7 and 8, however, the cv prefix is required:

xmlns:cv=“http://features.real.com/systemComponent”

Note that the preceding example also declares the SMIL 2.0 namespace:

xmlns=“http://www.w3.org/2001/SMIL20/Language”

RealPlayer 7 and 8 do not recognize the SMIL 2.0 namespace, so they ignore it
and play the file as SMIL 1.0. Because of this namespace, though, RealOne
Player or later plays the file as SMIL 2.0, letting you add SMIL 2.0 features.

The system-required Attribute

The system-required attribute is the SMIL 1.0 version of systemRequired. It
ensures that the media player recognizes the customizations namespace. If the
player doesn’t, it ignores the element entirely.

The systemComponent Attribute

The systemComponent attribute in the preceding example uses the cv prefix of
the customizations namespace, and specifies that the player must be version
6.0.10 or later, which is the major version number for RealOne Player. The
457

RealNetworks Production Guide
syntax is specific to RealNetworks media players, and should be entered
exactly as shown:

cv:systemComponent="http://features.real.com/?component;player=6.0.10"

For More Information: See “Backward-Compatible SMIL File” on
page 465 for an example of how to add SMIL 2.0 transparency
extensions to a SMIL 1.0 file.

Switch Group Examples
The following examples illustrate different ways to use switching. Note that
there are many applications for switching, and many ways to write SMIL
presentations that include switching. To view more examples, get the zipped
HTML version of this guide as described in “How to Download This Guide to
Your Computer” on page 11, and view the Sample Files page.

Multiple Test Attributes

Using multiple test attributes in a <switch> group, you can have RealPlayer
choose clips based on combined criteria, such as both available bandwidth
and language preference. There are two ways to do this:

• include multiple test attributes in each tag

• nest <switch> groups

Example 1: Multiple Test Attributes for Each Clip

In the following example, the first two RealAudio clips have two test attributes
each—one for language and one for bandwidth. Both attributes must be viable
for RealPlayer to choose the clip. Because RealPlayer evaluates the <switch>
choices from top to bottom, selecting the first viable option, the last two
choices do not have language attributes. This lets all RealPlayers other than
those with French selected as their language preference choose between the
two English-language clips, based on their available bandwidth:

<switch>
 <!-- French language choices -->
 <audio src=”french2.rm” systemLanguage=”fr” systemBitrate=”47000”/>
 <audio src=”french1.rm” systemLanguage=”fr” systemBitrate=”20000”/>
458

CHAPTER 18: Switching
 <!-- English language choices (default) -->
 <audio src=”english2.rm” systemBitrate=”47000”/>
 <audio src=”english1.rm” systemBitrate=”20000”/>
</switch>

Example 2: Nested <switch> Groups

The next example adds RealText clips in both French and English to the
presentation possibilities. Here, <switch> groups are nested so that RealPlayers
with French set as their language preference play the French RealText clip and
choose from the set of French-language RealAudio clips, based on available
bandwidth. All other RealPlayers play the English RealText clip and choose
from the set of English-language RealAudio clips:

<switch>
 <!-- Choose French as the language. -->
 <par systemLanguage=”fr”>
 <textstream src=”frenchcredit.rt” region=”credits_region” fill=”remove”/>
 <switch>
 <!-- Choose fast or slow bit rate for French audio -->
 <audio src=”french2.rm” systemBitrate=”47000”/>
 <audio src=”french1.rm” systemBitrate=”20000”/>
 </switch>
 </par>
 <!-- Choose English as the language. This is the default. -->
 <par>
 <textstream src=”enlgishcredits.rt” region=”credits_region” fill=”remove”/>
 <switch>
 <!-- Choose fast or slow bit rate for English audio -->
 <audio src=”english2.rm” systemBitrate=”47000”/>
 <audio src=”english1.rm” systemBitrate=”20000”/>
 </switch>
 </par>
</switch>

Different Video Sizes Chosen Automatically

As described in “High-Bandwidth and Low-Bandwidth Streaming Audiences”
on page 85, you can encode different sizes of the same video, streaming a small
clip over slow modems and a larger clip (or clips) over faster connections.
Reducing the video size for slower connections ensures that the video’s frame
459

RealNetworks Production Guide
rate and visual quality remain high. For example, you could create the three
clips listed in the following table.

In the following example, each <switch> tag test attribute uses the target bit
rate of its clip’s slowest SureStream stream. The <switch> tag then presents the
three RealVideo choices to RealPlayer from fastest to slowest:

<switch>
 <video src=”videobig.rm” systemBitrate=”225000” region=”video_region” .../>
 <video src=”videomedium.rm” systemBitrate=”45000” region=”video_region” .../>
 <video src=”videosmall.rm” systemBitrate=”20000” region=”video_region” .../>
</switch>

For More Information: Target bit rates are listed in the table
“Maximum Streaming Rates” on page 46.

Subtitles and HTML Pages in Different Languages

The section “Switching Between Language Choices” on page 446 explains the
basics of using systemLanguage to play different clips based on viewer language
preferences (Tools>Preferences>Content). The following examples show how to
augment a video clip with RealText subtitles in different languages, and how
to display different pages in the related info pane based on language choice.

Example 1: RealText Subtitles

The following sample SMIL file defines a small text region that overlays the
bottom portion of a video clip. Inline switching displays RealText subtitles if
the viewer has a language preference set to any variation of French or Spanish.
Viewers preferring other languages see only the video:

<smil xmlns=“http://www.w3.org/2001/SMIL20/Language”
xmlns:rn=“http://features.real.com/2001/SMIL20/Extensions”>
 <head>
 <meta name="title" content="Semi-Transparent Video Subtitles"/>
 <meta name="copyright" content="(c)2002 RealNetworks, Inc."/>

RealVideo Clips at Different Sizes

Clip Name Dimensions SureStream Audiences systemBitrate value

videosmall.rm 176 x 132 28.8 and 56 Kbps Modems 20000

videomedium.rm 240 x 180 ISDN and corporate LANs 45000

videobig.rm 320 x 240 256, 384, and 512 Kbps DSL
and cable modems

225000
460

CHAPTER 18: Switching
 <layout>
 <root-layout width="320" height="240" backgroundColor="black"/>
 <region id="video_region" z-index="1"/>
 <region id="text_region" height="35" bottom="0" left="10" z-index="2"/>
 </layout>
 </head>
 <body>
 <par>
 <video src="video3.rm" region="video_region" fill="remove"/>
 <textstream src="subtitles_fr.rt" systemLanguage="fr" region="text_region"
 rn:backgroundOpacity="45%" fill="freeze"/>
 <textstream src="subtitles_es.rt" systemLanguage="es" region="text_region"
 rn:backgroundOpacity="45%" fill="freeze"/>
 </par>
 </body>
</smil>

For More Information: In the preceding sample, the
rn:backgroundOpacity attribute is used on the RealText clips to
render their backgrounds partially transparent. For more on
this attribute, see “Creating Transparency in a Clip’s
Background Color” on page 221. Chapter 6 explains RealText.

Example 2: Different HTML Pages for Different Languages

Because SMIL lets you control HTML pages from your media, it’s easy to
display different HTML pages in different languages based on the viewer’s
language preference. The following sample, which omits the SMIL header,
automatically displays one of three different HTML pages in the related info
pane. The first page appears if the viewer prefers French. The second page
displays for Spanish speakers. The third page, which has no systemLanguage
attribute, is the default choice that appears for all other viewers:

<body>
 <video id="main" src="video2.rm" region="video_region" fill="freeze">
 <switch>
 <area systemLanguage="fr" href="http://www.example.com/french.htm"
 actuate="onLoad" external="true" rn:sendTo="_rpcontextwin"
 sourcePlaystate="play">
 <rn:param name="width" value="300"/>
 <rn:param name="height" value="280"/>
 </area>
 <area systemLanguage="es" href="http://www.example.com/spanish.htm"
 actuate="onLoad" external="true" rn:sendTo="_rpcontextwin"
461

RealNetworks Production Guide
 sourcePlaystate="play">
 <rn:param name="width" value="300"/>
 <rn:param name="height" value="280"/>
 </area>
 <area href="http://www.example.com/default.htm" actuate="onLoad"
 external="true" rn:sendTo="_rpcontextwin" sourcePlaystate="play">
 <rn:param name="width" value="300"/>
 <rn:param name="height" value="280"/>
 </area>
 </switch>
 </video>
</body>

Note that the body of this SMIL file consists of just one clip source tag
(<video>...</video>). Within these tags, a switch group (<switch>...</switch>)
contains three hyperlinks (<area>...</area>). Once RealPlayer chooses a
hyperlink based on the viewer language preference, the linked page opens
automatically, setting the related info pane’s size.

For More Information: To find out more about SMIL links that
open HTML pages, see “Linking to HTML Pages” on page 373.

System Captions Using RealText

As the section “Enhancing Presentation Accessibility” on page 450 explains,
you can use the systemCaptions attribute to display captions for hearing-
impaired viewers. A viewer can turn on the captions preference by giving the
Tools>Preferences command, then selecting the Content pane.

The following examples demonstrate various ways to display RealText
captions for an audio track, but you can use any type of clip to provide
captions. The systemCaptions=”on” attribute simply tells RealPlayer to play a
certain clip if the viewer has turned the captions preference on. There are no
requirements for what type of clip to use for captions, though.

Tip: Captions are different from subtitles. Captions, which are
typically in the same language as the clip audio, are meant for
hearing-impaired viewers who have set the captions preference
on. Subtitles are for all viewers, and are generally in languages
different from the clip audio. You can display subtitles based
on the viewer’s language preference, which is described in
“Switching Between Language Choices” on page 446.
462

CHAPTER 18: Switching
For More Information: Chapter 6 explains how to write a
RealText clip. See Chapter 12 for information about layouts.

Example 1: Transparent RealText Overlay

Although it may not be suitable in all cases, the simplest way to provide
captioning is to overlay a clip with a RealText clip that has a background
rendered transparent or semi-transparent through the rn:backgroundOpacity
attribute. To do this, you define two regions, one for the video, and one for the
captions, using the z-index attribute to ensure that the captions appear in
front, as shown in the following example:

<layout>
 <root-layout width="320" height="240" backgroundColor="black"/>
 <region id="video_region1" z-index="1"/>
 <region id="text_region" height="40" bottom="0" left="10" z-index="2"/>
</layout>

You then play the RealText clip in parallel with the main clip, using
systemCaptions=“on” to display the RealText clip only in RealPlayers that have a
preference for system captions. Because system captions are either on or off,
you can easily use inline switching (no <switch> tag), as shown here:

<par>
 <video src="video.rm" region="video_region1" fill="remove"/>
 <textstream src="transparentcaptions.rt" region="text_region"
 systemCaptions="on" rn:backgroundOpacity="45%" fill="remove"/>
</par>

For More Information: For more on rn:backgroundOpacity, see
“Adjusting Clip Transparency and Opacity” on page 220

Example 2: Caption Region

If you do not want to overlay the video as described in the preceding example,
you can create a separate region for the captions through your SMIL file
layout. The following layout is similar to that used in the preceding example,
except that the captions region appears below the video region rather than on
top of it:

<layout>
 <root-layout width="320" height="300" backgroundColor="black"/>
 <region id="video_region" height="240"/>
 <region id="text_region" height="40" top="260" left="10"/>
</layout>
463

RealNetworks Production Guide
If you play a video in parallel with a captions clip as shown in the preceding
example, the captions region would appear blank for viewers who have the
captions preference turned off. Alternatively, you can create a “filler clip” that
displays in the captions region when captions are off. This clip might simply
thank the viewer for watching the presentation. The following example
demonstrates how to do this:

<par>
 <video src="video3.rm" region="video_region" fill="remove"/>
 <switch>
 <textstream src="videocaptions.rt" region="text_region" systemCaptions="on"/>
 <textstream src="fillercaptions.rt" region="text_region" systemCaptions="off"/>
 </switch>
</par>

Example 3: Media Playback Pane Resized for Captions

This example demonstrates how to use systemCaptions in <layout> tags to
change layouts depending on whether or not captions are displayed. The
following layout creates a captions region only when captions are turned on.
Note that in each layout, the video region has a unique ID, which is required
by SMIL. But both video regions have the same name:

<switch>
 <layout systemCaptions="on">
 <root-layout width="320" height="300" backgroundColor="black"/>
 <region id="video_region1" regionName="video" height="240"/>
 <region id="text_region" height="40" top="260" left="10"/>
 </layout>
 <layout systemCaptions="off">
 <root-layout width="320" height="240" backgroundColor="black"/>
 <region id="video_region2" regionName="video"/>
 </layout>
</switch>

Tip: Although the preceding example uses systemCaptions in the
<layout> tag, you could use the attribute in <root-layout/> and
<region/> tags instead to display or hide individual regions
based on RealPlayer’s captions setting.

In the SMIL body, you then assign clips to the regions. Note that the following
markup assigns the single video clip to a region through the region name
instead of the region ID. If you didn’t use the region name, you’d need to
create two <video/> tags, one assigned to video_region1, the other assigned to
464

CHAPTER 18: Switching
video_region2. Each tag would require a systemCaptions attribute to turn the
tag on or off depending on the captions preference. With the following
method, only the RealText clip uses the systemCaptions attribute:

<par>
 <video src="video.rm" region="video" .../>
 <textstream src="captions.rt" region="text_region" systemCaptions="on" .../>
</par>

For More Information: See “Setting Region IDs and Names” on
page 282 for more on region names.

Backward-Compatible SMIL File

The section “Combining SMIL 2.0 with SMIL 1.0” on page 456 explains the
basics of using systemComponent and system-required to create a SMIL 1.0
presentation for RealPlayer 7 and 8 that includes enhanced SMIL 2.0 features
for RealOne Player or later. This sample guides you step-by-step through the
process of adding a semi-transparent GIF logo to a video clip. In RealPlayer 7
and 8, which do not support transparency, only the video plays. In RealOne
Player or later, the logo appears in front of the video in the lower-right corner
of the media playback pane. The following is the SMIL 1.0 file that plays the
video:

<smil>
 <head>
 <meta name="title" content="Video Playback"/>
 <meta name="copyright" content="(c)2002 RealNetworks, Inc."/>
 <layout>
 <root-layout width="320" height="240" background-color="white"/>
 <region id="video_region" width="320" height="240" z-index="1"/>
 </layout>
 </head>
 <body>
 <video src="video1.rm" region="video_region" fill="remove"/>
 </body>
</smil>

➤ To update the preceding SMIL 1.0 f ile:

1. Add the required namespaces to the <smil> tag.

You need to add the namespaces for SMIL 2.0 and the RealNetworks
extensions, which provide support for transparency. RealPlayer 7 and 8
465

RealNetworks Production Guide
ignore these namespaces. All players starting with RealPlayer 7 recognize
the systemComponent namespace, however:

<smil xmlns=“http://www.w3.org/2001/SMIL20/Language”
xmlns:rn=“http://features.real.com/2001/SMIL20/Extensions”
xmlns:cv=“http://features.real.com/systemComponent”>

Note: In presentations played by RealPlayer 7 and 8, the cv
prefix for the systemComponent namespace is required.

2. Modify the layout.

The preceding SMIL 1.0 file contains a single video region, so the GIF logo
requires another region. Even though the updated file is technically SMIL
2.0, it uses SMIL 1.0 layout features, as well as SMIL 1.0 attribute names
like background-color. Although you could add SMIL 2.0 layout features
such as subregions, you’d need to hide them from earlier players. It’s
therefore easier to use a SMIL 1.0 layout, which is forward-compatible
with SMIL 2.0 and RealOne Player or later:

<layout>
 <root-layout width="320" height="240" background-color="white"/>
 <region id="video_region" width="320" height="240" z-index="1"/>
 <region id="logo_region" width="52" height="46" top="190" left="260"
 fit="meet" z-index="2"/>
</layout>

For More Information: For information about SMIL 1.0
attributes, see RealSystem iQ Production Guide for Release 8.

3. Add the image clip.

The SMIL 1.0 file’s content consists of a video clip. To display the logo,
you play the video and the GIF image in parallel. The system-required and
cv:systemComponent attributes ensure that the logo clip is played only by a
RealNetworks media player with a version number of at least as high as
6.0.10, which is the RealOne Player major version number. To RealPlayer 7
and 8, the body contains just the video clip:

<body>
 <par>
 <video src="video3.rm" region="video_region" fill="remove"/>
 <img system-required="cv"
 cv:systemComponent="http://features.real.com/?component;player=6.0.10"
466

CHAPTER 18: Switching
 src="prodlogo.gif" rn:mediaOpacity="50%" id="rn_logo"
 region="logo_region" dur="10s" fill="freeze"/>
 </par>
</body>

For More Information: For details about rn:mediaOpacity, see
“Adjusting Clip Transparency and Opacity” on page 220.

4. Test the SMIL file.

Always test your presentation by opening it in RealOne Player or later to
verify that the SMIL 2.0 features are present, and in RealPlayer 7 or 8 to
ensure that backward-compatibility works. You will need a separate
computer for each version of RealPlayer you test.

Full SMIL File Switching

As noted in “Using a SMIL File as a Source” on page 212, a SMIL file can use
another SMIL file as a source clip. Combining this feature with switching
gives you a powerful means for splitting your presentation into separate SMIL
files. You can then avoid writing a single SMIL file with complex <switch>
groups around its many elements. For example, your master SMIL file may
look like this:

<smil xmlns=“http://www.w3.org/2001/SMIL20/Language”>
 <body>
 <switch>
 <ref src="smilswitch_fr.smil" systemLanguage="fr"/>
 <ref src="smilswitch_es.smil" systemLanguage="es"/>
 <ref src="smilswitch_ja.smil" systemLanguage="ja"/>
 <ref src="smilswitch_sv.smil" systemLanguage="sv"/>
 <ref src="smilswitch_def.smil"/>
 </switch>
 </body>
</smil>

This main SMIL file defines no layout, title, author, or copyright. The body
consists entirely of a <switch> group. The first SMIL file in the group plays
only if the viewer’s RealPlayer has French as its preferred language setting. The
next three SMIL files play for viewers preferring Spanish, Japanese, or Swedish,
respectively. The last file plays for all other viewers. Each referenced SMIL file
defines its own layout, content, and timing, and may have additional <switch>
groups to play different content if, for example, the viewer requests system
captions.
467

RealNetworks Production Guide
468

C H A P T E R
19

 Chapter 19: PREFETCHING
Prefetching allows you to manage bandwidth in a complex
presentation. This helps you to ensure that the presentation streams
smoothly. You can stream data for high-bandwidth clips while low-
bandwidth clips play, for example. To use prefetching, though, you
must thoroughly understand how clips use bandwidth, as well as
how to create a presentation timeline.

Note: Prefetching is not currently functional in RealPlayer.

For More Information: To learn more about bandwidth use, read
Chapter 2. Chapter 13 describes the basics of SMIL timing.

Understanding Prefetching
Prefetching is a powerful feature for managing bandwidth in a streaming
presentation. It lets you stream portions of large clips, or all data for small
clips, before the clips play. RealPlayer stores the prefetched data in memory
until clip playback begins. Using prefetched data, RealPlayer can display clips
faster when they begin to play. This can reduce or eliminate the buffering that
normally occurs when clips start to play.

Uses of prefetching include downloading small image files. If a presentation
contains graphic buttons that display while a video plays, for example, you can
prefetch the graphics files before the video begins. When the video-with-
buttons segment starts, the graphics do not compete with the video for
bandwidth. Another use of prefetching is to download an audio or video clip’s
preroll, which is described in the section “Buffering” on page 45, before the
clip plays.

Prefetching data is useful only when streaming across a network. It has no
discernible effect when clips reside on the viewer’s local computer. To use it
effectively, you typically need to have a presentation in which low-bandwidth
sections precede high-bandwidth sections. In these cases, prefetching lets you
469

RealNetworks Production Guide
take advantage of low bandwidth use to download data for upcoming high-
bandwidth segments. When you stream only a video, for example, prefetching
offers no advantages. If a RealText clip precedes the video, though, you can
use prefetching to stream the RealVideo clip’s preroll while the RealText clip
plays.

Warning! You should have a strong understanding of timelines
and bandwidth management when prefetching clip data.
Incorrect use of this feature may stall your presentation or
cause RealPlayer to use excessive amounts of memory.

Using the <prefetch/> Tag
To prefetch data, you use a <prefetch/> tag, which is similar to a clip source tag
like <video/>. Instead of playing a clip, though, the <prefetch/> tag downloads
all or part of the clip data for playback later. As with a clip source tag, the
<prefetch/> tag uses a URL to indicate the data to download, and can include
timing attributes such as dur. Unlike clip source tags, a <prefetch/> tag has its
own attributes that govern the speed and amount of data downloaded. In the
following example, a <prefetch/> tag downloads a video clip’s preroll to
RealPlayer while a RealText clip plays presentation credits:

<seq>
 <!-- Segment 1: Roll RealText credits and download video preroll. -->
 <par endsync=”credits”>
 <texstream src=”rtsp://helixserver.example.com/credits.rt” id=”credits” .../>
 <prefetch src=”rtsp://helixserver.example.com/video1.rm”
 mediaTime=”15s” bandwidth=”18000” />
 </par>
 <!-- Segment 2: Play the video. -->
 <video src=”rtsp://helixserver.example.com/video1.rm” region=”main”/>
</seq>

In this example, the <prefetch/> tag downloads the first 15 seconds of the clip
video1.rm at a rate of approximately 18 Kbps. RealPlayer holds this data in
memory until the video plays, eliminating the buffering that occurs when the
clip starts to play. RealPlayer matches the prefetched data to the video
through the identical URLs in the <prefetch/> and <video/> tags.

Note that in the preceding example, the <par> tag has an endsync attribute that
ends the group when the RealText clip finishes. Without this attribute, there
could be empty playback time if the prefetching does not complete before the
RealText clip finishes. Because RealPlayer treats a <prefetch/> clip like other
470

CHAPTER 19: Prefetching
source clips when it determines presentation timing, always use a timing
mechanism, such as endsync or dur, to ensure that prefetching does not
interfere with presentation playback.

The following table summarizes the <prefetch/> tag attributes that control
how much clip data is downloaded. The following sections describe how to
use these attributes effectively.

Managing Prefetch Bandwidth
The <prefetch/> tag’s bandwidth attribute governs how much bandwidth is
assigned to fetching the clip’s data. If you do not include the bandwidth
attribute, prefetching uses all of the connection’s available bandwidth, which
is rarely desirable. You can specify a specific streaming speed in bits per second
(bps), or indicate a percentage of the available bandwidth. Note that you can
prefetch data at any bandwidth, regardless of the clip’s normal streaming
speed. For an audio clip that normally streams at 20 Kbps, for instance, you
could prefetch data at any speed, from 1 Kbps to 100 Kbps or faster.

Specifying Prefetch Bandwidth in Bits Per Second

To specify the exact streaming speed in bits per second, start with the
maximum recommended bandwidth for your slowest targeted connection. If
56 Kbps modems are your lowest-speed targets, for instance, use a 34 Kbps
maximum streaming speed, as given in the table “Maximum Streaming Rates”
on page 46. Next, determine how much bandwidth you can dedicate to
prefetching. If you want to stream the prefetched data in parallel with a 16
Kbps RealAudio clip, for example, you have a maximum of 18 Kbps for
prefetching:

<prefetch/> Attributes

Attribute Value Default Function Reference

bandwidth bps|
percentage

100% Sets the bandwidth used to get data. page 471

mediaSize bytes|
percentage

100% Specifies the amount of data to
prefetch based on the clip’s size.
Overrides mediaTime.

page 473

mediaTime h|min|s|ms|
percentage

100% Sets the amount of data to prefetch
based on the clip’s duration.

page 474
471

RealNetworks Production Guide
<par endsync=”music”>
 <audio src=”...” id=”music” dur=”50s”/>
 <prefetch src=”...” begin=”10s” bandwidth=”18000” mediaSize=”20480”/>
</par>

In this example, data is prefetched at approximately 18 Kbps until either 20
Kilobytes of data have been received, or the audio clip stops playing. Note that
the <prefetch/> tag’s begin time means that the prefetching begins 10 seconds
after the audio clip starts to play. This dedicates all available bandwidth to the
audio clip during the first 10 seconds of playback, making the audio clip’s
own preroll stream faster. Although a begin value is optional, including it can
help to manage bandwidth in the segment that includes prefetching.

Specifying Prefetch Bandwidth as a Percentage

Determining a percentage value to use for the bandwidth attribute is more
complicated than specifying a specific bandwidth. It has useful benefits,
though. Suppose that you use a bandwidth=“50%” value when prefetching clip
data. Over a 56 Kbps modem, the prefetching uses about 17 Kbps. Over a 256
Kbps DSL line, though, the prefetching uses over 100 Kbps, finishing much
faster. If you used bandwidth=“17000” instead, the prefetching would take place
at the same rate over both connections.

The value you specify equates to a percentage of the usable bandwidth that
RealPlayer detects, which may differ from the speeds listed in the table
“Maximum Streaming Rates” on page 46. For a 56 Kbps modem, for example,
the detected bandwidth will likely be higher or lower than the maximum
streaming speed of 34 Kbps. But it will definitely be less than the modem’s raw
speed of 56 Kbps. Because you don’t know the exact prefetching speed when
you use a percentage value, you need to decide upon a value carefully.

To select a percentage value, start with the maximum streaming speed for
your slowest target connection. If your slowest targets are 56 Kbps modems,
use a 34 Kbps maximum streaming speed. Then determine how much
bandwidth is left for prefetching. For instance, you have 18 Kbps available for
prefetching data while a 16 Kbps RealAudio clip plays. This 18 Kbps is
approximately 53 percent of the 34 Kbps maximum speed. However, because
the speed RealPlayer detects may be higher or lower, select a lower percentage
value, such as 45 percent, as shown in the following example:
472

CHAPTER 19: Prefetching
<par endsync=”music”>
 <audio src=”...” id=”music” dur=”50s”/>
 <prefetch src=”...” begin=”10s” bandwidth=”45%” mediaSize=”20480”/>
</par>

Controlling Prefetch Data Download Size
Two attributes for the <prefetch/> tag, mediaSize and mediaTime, control the
amount of data that RealPlayer downloads for each clip. Use just one of these
attributes in each <prefetch/> tag. If you use both mediaSize and mediaTime, the
mediaTime attribute is ignored. If you do not use either of these attributes,
RealPlayer attempts to prefetch all the clip’s data, which can cause RealPlayer
to run out of memory with large clips such as videos.

Tip: The amount of data you can prefetch depends on the
amount of computer memory available to RealPlayer. To reach
the widest audience, do not try to prefetch more than one
Megabyte of clip data.

Prefetching a Specific Amount of Data

The mediaSize attribute allows you to set how much of the clip data to prefetch
based on the clip’s file size. You must use mediaSize rather than mediaTime for
clips that do not have internal timelines, such as images. Specify the mediaSize
value in bytes, or as a percentage of the clip’s total size.

Specifying mediaSize in bytes and bandwidth in bits per second lets you
determine exactly how long the prefetching lasts. The following example
prefetches 10 Kilobytes of clip data at a rate of approximately 6 Kilobits per
second. The prefetching therefore takes approximately 13.7 seconds to
complete:

<prefetch src=”...” mediaSize=”10240” bandwidth=”6000”/>

Tip: Remember, the bandwidth attribute is in bits per second,
whereas the mediaSize attribute is in bytes (8 bits = 1 byte).

If you want to prefetch entire clips, such as whole GIF files, specify
mediaSize=“100%” or leave the attribute out of the <prefetch/> tag. In these
cases, you’ll need to know the size of the prefetched clip to determine how
long the prefetching lasts.
473

RealNetworks Production Guide
Prefetching a Specific Length of a Clip’s Timeline

For clips that have internal timelines, such as RealAudio, RealVideo, or Flash,
you can use mediaTime instead of mediaSize to prefetch a specific stretch of the
clip’s timeline. This is useful for prefetching the clip’s preroll. You can specify
a percentage value, or a timing value as described in “Specifying Time Values”
on page 315. The following example prefetches 10 seconds of clip data:

<prefetch src=”...” mediaTime=”10s” bandwidth=”4000”/>

Keep in mind that mediaTime does not control how long prefetching lasts. The
amount of time required for prefetching depends on the amount of data
downloaded and the bandwidth. If the clip in the preceding example normally
streams at 16 Kbps, for example, RealPlayer needs approximately 40 seconds to
prefetch the first 10 seconds of the clip. This is because the prefetching
bandwidth is only a quarter of the clip’s streaming bandwidth.

Tip: To determine how much preroll a clip requires, open the
clip in RealPlayer, and use File>Clip Properties>Clip Source to
view the buffering information.

Tips for Prefetching Data
The following sections provide additional pointers for using <prefetch/> tags
to stream clip data.

RealAudio and RealVideo Prefetching

• You cannot prefetch a single stream of a SureStream RealAudio or
RealVideo clip. If you specify mediaTime=”10s”, for example, you will get
the first ten seconds of every stream in the SureStream clip.

• For large streaming clips such as RealAudio, RealVideo, do not prefetch
much more than the clip’s preroll, which is typically 5 to 15 seconds. You
can do this easily with an attribute and value such as mediaTime=“10s”.
Prefetching more data wastes bandwidth and can cause RealPlayer to run
out of memory.

• Try not to prefetch data too far in advance of when the clip plays. There’s
little advantage to prefetching a video’s preroll 15 minutes before it plays
because viewers may stop the presentation within those 15 minutes. As
well, RealPlayer has to reserve memory for that clip data for 15 minutes,
474

CHAPTER 19: Prefetching
and that memory may be more effectively used for rendering the clips that
do play during that time span.

• Using constant bit rate encoding (CBR) or variable bit rate encoding
(VBR) with a RealVideo clip does not affect prefetching, other than that
VBR clips typically have a longer preroll than CBR clips.

• Because of its low bandwidth requirements, RealText makes an ideal clip
to display as you prefetch data for high-bandwidth clips such as
RealAudio and RealVideo. See Chapter 6 for more information about
RealText. Flash animation, which is described in Chapter 5, can also
stream effectively at low bandwidths to mask prefetching.

Prefetch URLs

• You can use a <meta name=”base” content=”URL”/> tag with prefetching to
set the base URL for all clips. See “Creating a Base URL” on page 215 for
more information.

• Because RealPlayer matches prefetched data to clips based on URLs, you
generally should not use prefetching when URLs are dynamically
generated and may change. An example of this is a banner in which the
URL changes each time the ad is requested from an ad server.

• Prefetching is compatible with the CHTTP caching protocol. For an
example that demonstrates these two features, see “Prefetching and
Caching an Image” on page 477.

SMIL Timing with Prefetching

• RealPlayer discards prefetched data after the clip plays the first time, even
if the clip uses a repeatDur or repeatCount attribute. If the clip plays again
later in the presentation, you need to prefetch its data again. Small files,
though, can be cached. For an example of this, see “Prefetching and
Caching an Image” on page 477.

• If you plan to use a clipBegin attribute to play a clip from some point other
than its normal starting point, use the same clipBegin value in the
<prefetch/> tag. For more on this attribute, see “Setting Internal Clip
Begin and End Times” on page 318.

• RealPlayer can prefetch clips from any server, including Web servers.
However, clipEnd and clipBegin attributes do not function for clips on Web
475

RealNetworks Production Guide
servers. For more information, see “Limitations on Web Server Playback”
on page 527.

• A <prefetch/> tag can have an ID like any clip source tag. This lets you use
endsync to end a group when prefetching finishes, as explained in the
example “Displaying an Image Until Prefetching Completes” on page 476.
For basic information about IDs, see “SMIL Tag ID Values” on page 200.

Prefetch Testing

• Prefetching data is useful only when streaming across a network. It has no
discernible effect when all clips reside on the viewer’s local computer or on
a CD, for example.

• Although playing the SMIL presentation on your local computer will help
you catch SMIL syntax errors, it does not guarantee that prefetching is
achieving the results you desire.

• When you use <prefetch/>, test your presentation by streaming it over a
network at your target connection’s bandwidth (by dialing in on a 56
Kbps modem, for example).

Prefetching Examples
The following examples show different ways to use prefetching.

Displaying an Image Until Prefetching Completes

In the following example, standby.gif is a small image file that asks the viewer
to wait while the presentation loads. The endsync attribute that targets the
<prefetch/> tag makes the image display until the video prefetching has
completed. The <prefetch/> tag’s begin time gives 100% of the available
bandwidth to the GIF download for five seconds. After that, the prefetching
takes almost all of the usable bandwidth:

<seq>
 <!-- Segment 1: Standby. -->
 <par endsync=”fetchvid”>

 <prefetch src=”rtsp://helixserver.example.com/video.rm” id=”fetchvid”
 bandwidth=”95%” mediaTime= “15s“ begin=”5s”/>
476

CHAPTER 19: Prefetching
 </par>
 <!-- Segment 2: Play video. -->
 <video src=”rtsp://helixserver.example.com/video.rm” region=”main”/>
</seq>

Prefetching and Caching an Image

The section “Caching Clips on RealPlayer” on page 217 explains how to store
clips in the RealPlayer cache for later use. While caching and prefetching are
different activities, they can be used together effectively to download and
retain small files that are used repeatedly. Caching should never be used with
large clips, however, because RealPlayer’s cache is only a few Megabytes in size.

The following SMIL sample, which omits layout attributes, prefetches a GIF
image used as the background for two videos. Because the CHTTP protocol is
used, the image is cached and does not need to be prefetched a second time:

<seq>
 <!-- Segment 1: Play introductory section and download background. -->
 <par endsync=”credits”>
 <textstream src=”rtsp://helixserver.example.com/credits.rt” id=”credits” .../>
 <prefetch src=”chttp://helixserver.example.com/image1.gif”
 bandwidth=”10000”/>
 </par>
 <!-- Segment 2: Play video 1 against background. -->
 <par>
 <video src=”rtsp://helixserver.example.com/video1.rm” .../>

 <par>
 ... other segments ...
 <!-- Segment 6: Play video 2 against background. -->
 <par>
 <video src=”rtsp://helixserver.example.com/video2.rm” .../>

 <par>
</seq>

Note: Keep in mind that prefetching stores clip data in
memory until the clip plays. Caching stores a copy of the clip
on the computer’s hard disk. That copy may remain in the
cache for several hours or even days.
477

RealNetworks Production Guide
478

P A R T
VIII

Par t V III: STREAMING YOUR PRESENTATIONS
Your hard work doesn’t pay off until you’ve streamed your clips
to others.Chapter 20 explains the option of embedding your
presentation in a Web page. Chapter 21 provides step-by-step
instructions for moving your streaming presentation to a server
and linking your Web page to it.

C H A P T E R
20

 Chapter 20: WEB PAGE EMBEDDING
With embedded playback, you can weave your clips through your
Web page’s text and graphics, and add controls such as stop and
start buttons. It’s as if you took RealPlayer apart and placed its
pieces at different spots on your page. This chapter explains how to
add markup to a Web page so that people can view your streaming
presentation directly through their Web browsers.

Understanding Web Page Embedding
To add media in your Web page, you first produce your clips. You can even use
SMIL to coordinate multiple clips. You then embed your presentation by
adding <EMBED> and, optionally, <OBJECT> tags to your Web page. You can use
HTML markup or style sheets to place your clips, along with various
RealPlayer controls, anywhere on your page. The following sections provide an
overview of Web page embedding, and describe its disadvantages compared to
displaying media in RealPlayer’s three-pane environment.

Embedding vs. the Three-Pane Environment

Although Web page embedding is a popular way to integrate media with
HTML content, displaying your presentation in RealPlayer’s native three-pane
environment provides a simpler means for coordinating media and HTML
pages. So, before you embed a presentation, determine if the native RealPlayer
environment suits your needs better. For the content author, the three-pane
environment provides the following advantages:

• Eliminates cumbersome markup and scripting.

The markup used to embed media in a Web page is cumbersome. Some
features, such as detecting a browser version and updating the HTML
content as a clip plays, can require complex scripting. In the three-pane
environment, you keep your media and HTML pages separate, tying the
481

RealNetworks Production Guide
two together with simple production techniques. This greatly reduces the
work required to coordinate media and HTML pages. It also lets you put
together complex presentations even if you’re not a Web professional.

• Simplifies testing and delivery

When you embed a presentation in a Web page, you must test it in
popular browsers, including Internet Explorer, Netscape Navigator, and
Opera. When you use the three-pane environment, you need to test
playback only in RealPlayer.

• Allows users to replay media quickly.

RealPlayer adds clips to its “Now Playing” list, letting viewers quickly
return to them without having to navigate back through a long list of
HTML pages. Viewers can also add your media clips to their list of
favorites.

For the presentation viewer, using the three-pane environment provides
several advantages as well:

• Places the focus on the media.

In RealPlayer, the media always appears in the media playback pane, so it
never gets lost. Additionally, the three-pane environment provides viewers
with a consistent interface and set of controls, allowing them to navigate
your site more easily.

• Enables the full range of RealPlayer features.

Embedded presentations do not give the viewer access to popular
RealPlayer features, such as media resizing, the equalizer, audio
visualizations, and RealPlayer skins.

• Eliminates pop-up blocking.

Many consumers automatically block pop-up browser windows. If you
embed your media in a pop-up Javascript window, for example, consumers
may need to disable their blocking software to view your presentation.

For More Information: For more information about the three-
pane environment, see “Step 2: Learn the RealPlayer 10
Interface” on page 29.
482

CHAPTER 20: Web Page Embedding
<EMBED> and <OBJECT> Tags

You can embed a RealPlayer presentation in a Web page using <EMBED> tags,
<OBJECT> tags, or both. When you use <EMBED>, your presentation will work in
browsers that support the Netscape plug-in architecture, including the
following:

• Netscape Navigator 3.0 and later.

• Microsoft Internet Explorer 3.0 and later.

Note: Even when you use the <EMBED> tag, RealPlayer
communicates with Internet Explorer browsers using ActiveX
technology. This makes the Netscape <EMBED> tag compatible
with both major browsers, including Internet Explorer 6 and
later.

Using <EMBED> tags allows you to reach the widest Internet audience, and this
chapter’s examples primarily use just <EMBED> tags. However, can also use
<OBJECT> tags, which provide playback capabilities within these products:

• Microsoft Internet Explorer 4.0 and later on Microsoft Windows.

• Most applications that support ActiveX controls, such as Visual Basic and
Visual C++.

As the section “Using <OBJECT> Tags” on page 489 explains, you can
combine <EMBED> and <OBJECT> tags in your Web page, which is a production
technique used by many Web professionals.

Layout Possibilities

When you embed a presentation, you use HTML to structure your Web page
and define where each streaming clip and RealPlayer control appears. A
common practice is to define an HTML table, embedding clips and RealPlayer
controls in various table cells. When you embed a SMIL presentation, you can
define a layout using SMIL and HTML, or just HTML alone.

Defining a Layout with SMIL and HTML

As described in Chapter 12, you can use SMIL to define an overall size for the
media playback pane (the root-layout). You might create a layout that is 400
pixels wide by 300 pixels high, for example, and define smaller regions within
that main area for clips. You then embed the entire playback area within your
Web page using a single <EMBED> tag, adding RealPlayer controls around it
483

RealNetworks Production Guide
with separate <EMBED> tags. All clips then appear within that 400-by-300 pixels
area, just as they would when played in RealPlayer. In fact, your SMIL file can
play in both your Web page and RealPlayer.

For More Information: See “Defining the Layout with SMIL” on
page 502.

Defining a Layout with HTML Alone

You can leave layout information out of your SMIL file, and use SMIL simply
to define your presentation timing and other playback features. In your Web
page, you then create a separate <EMBED> or <OBJECT> tag for each clip, placing
each clip anywhere on your page. In this case, all clips do not need to appear
within a rectangular root-layout area. This gives you more layout flexibility
than when defining the overall clip layout through SMIL. However, because
your SMIL file lacks layout information, it may have unexpected layout results
if played directly in RealPlayer.

For More Information: See “Defining the Layout with HTML”
on page 503.

RealPlayer Controls

In addition to clips, you can embed many different RealPlayer buttons, sliders,
and information panels in your Web page. You might include separate start,
stop, and pause buttons in your Web page, for example. Or, you could add
entire control panels that contain multiple buttons and readouts. You can
make these controls any size you want, too, giving you even more layout
flexibility. The section “Adding RealPlayer Controls” on page 490 explains all
the available controls.

Javascript and VBScript

RealPlayer supports Javascript, which enables you to extend the <EMBED> tag
capabilities to turn your own graphic image into a RealPlayer Play button, for
example. RealPlayer’s ActiveX control also provides playback capabilities for
the products that support <OBJECT> tags. This guide does not explain these
scripting capabilities. For information on using Javascript or VBScript, see
RealPlayer Scripting Guide, which is available for download from the following
Web page:

http://service.real.com/help/library/encoders.html
484

CHAPTER 20: Web Page Embedding
Using <EMBED> Tags
Each <EMBED> tag has three required parameters, and can include many
optional parameters, which are described throughout this chapter. The
following table lists the parameters to include in every <EMBED> tag.

A basic <EMBED> tag looks like the following, which creates a playback area 320
pixels wide by 240 pixels high within the Web page:

<EMBED SRC=”presentation.rpm” WIDTH=320 HEIGHT=240 NOJAVA=true>

You add to your Web page one <EMBED> tag for each playback window you
want in your page, and one <EMBED> tag for each control, such as a Stop
button, that you want to include.

Setting <EMBED> Tag Parameters

<EMBED> tags are an extension of HTML. Because they are not SMIL tags, they
do not use the same syntax rules as SMIL. The <EMBED> tag parameters are
typically in this form:

PARAMETER=value

Parameter names can be any case, although this guide shows them uppercase.
Except for file names, parameter values are not case-sensitive. Unless they are
URLs, parameter values do not need to be enclosed in quotation marks.

Specifying the Source

You must include the SRC parameter in every <EMBED> tag, even when the tag
embeds a RealPlayer control instead of a clip. However, you don’t specify a clip
or SMIL file directly with SRC . Instead, you specify a Ram file that has a .rpm
extension. This causes the browser to use RealPlayer as a helper application,
rather than to launch it as a separate program. The .rpm file is a simple text
file that gives the full URL to your clip or SMIL file.

Basic <EMBED> Tag Parameters

Parameter Value Function Reference

HEIGHT pixels Sets the height of the clip or control. page 488

NOJAVA false|true Keeps the Java virtual machine from starting. page 488

SRC filename.rpm Locates the Ram file (.rpm). page 485

WIDTH pixels Sets the width of the clip or control. page 488
485

RealNetworks Production Guide
For More Information: For information about Ram file syntax,
see “Launching RealPlayer with a Ram File” on page 508.

Developing Your Presentation

The easiest means for developing your embedded presentation is to keep your
clips in the same folder as your Web page on your desktop computer. Your
<EMBED> tag can then link to a .rpm file in that folder:

<EMBED SRC=”presentation.rpm” WIDTH=300 HEIGHT=134>

To embed a single video, for example, the .rpm file simply contains a local file
URL to the clip (the file:// protocol designation is required):

file://video.rm

Warning! For embedded playback to work with Netscape
Navigator 6, the path to the .rpm file on a server or your local
computer cannot contain spaces or even escape codes for
spaces (%20). This causes Navigator 6 to search for a missing
plug-in.

Delivering Your Presentation

When you are ready to deliver your presentation to your audience, move your
files to their respective servers and change the URLs in your files. Note that
directory paths cannot contain spaces.

Keeping the .rpm File and the Web Page Together

If you plan to keep the .rpm file with the Web page, you do not need to change
the SRC values in your <EMBED> tags. You can simply transfer your .rpm file and
your Web page to the same directory on your Web server.

Putting the .rpm File and the Web Page in Different Locations

If you move the .rpm file to a different directory than that Web page, link each
<EMBED> tag’s SRC parameter to the .rpm file with a full HTTP URL:

SRC=”http://www.example.com/media/presentation.rpm”

Linking to Streaming Clips

No matter where you put your .rpm file and your clips, modify the .rpm file to
give the fully-qualified URL to the embedded clip or SMIL file. If the clip or
SMIL file is on a Web server, use an HTTP URL. If the clip or SMIL file is on
Helix Server, use an RTSP URL.
486

CHAPTER 20: Web Page Embedding
Tip: Always use a full URL in the .rpm file, even if all files and
clips are in the same directory on a Web server. RealPlayer uses
the .rpm file to locate the clip or presentation. Without a fully-
qualified URL, RealPlayer must construct the location from
the original Web page URL and the information in the .rpm
file. This creates more possibility for errors.

For More Information: For more information on URLs in .rpm
files, see “Launching RealPlayer with a Ram File” on page 508.
The section “The Difference Between RTSP and HTTP” on
page 507 explains why Helix Server uses the RTSP protocol
instead of a Web server’s HTTP protocol.

Linking to Local Clips

If you will make your presentation available to people on their local machines
(through a download or a CD, for instance), you do not need to change any
URLs from those described in “Developing Your Presentation” on page 486. In
rare cases, though, you may want to use an absolute link, rather than a relative
link, in the .rpm file. When writing absolute links, use forward slashes in paths
to create “Web style” paths. For example, instead of this URL:

file://c:\media\presentation.rpm

use the following URL, which includes three forward slashes in file:///, and
uses forward slashes in path names as well:

file:///c:/media/presentation.rpm

Using Helix Server’s Ramgen to Eliminate the Ram File

When your embedded clips reside on a Helix Server that uses the Ramgen
feature, you can eliminate the .rpm file when you deliver your presentation.
Your SRC parameter uses an HTTP URL to the clip or SMIL file on Helix
Server, and includes a /ramgen/ parameter along with the ?embed option:

SRC=”http://helixserver.example.com:8080/ramgen/sample.smil?embed”

The HTTP protocol is required because a browser cannot make an RTSP
request. When /ramgen/ and the ?embed parameter are used, though, Helix
Server causes the browser to start RealPlayer as a helper application, then
streams the clip or SMIL file to RealPlayer using RTSP. Consult your Helix
Server administrator for the correct URL to your Helix Server.
487

RealNetworks Production Guide
For More Information: For details on using the Ramgen option,
see “Using Ramgen for Clips on Helix Server” on page 522.

Setting the Width and Height

Required for each <EMBED> tag, the WIDTH and HEIGHT parameters set the size
of the playback area. If you omit these parameters, the playback area may
appear as a tiny icon because streaming media presentations do not resize
themselves automatically. The values for WIDTH and HEIGHT are in pixels by
default, so a width of 300 creates a playback area 300 pixels wide. Setting
WIDTH and HEIGHT to 0 (zero) hides the playback area.

You can also express WIDTH and HEIGHT as percentages of the browser window
size. For example, a width of 50% makes the width of the presentation area
half the width of the browser window. Keep in mind that different types of
media scale with different results. For example, a video scaled to a different
width-to-height ratio may not look good. Vector-based clips such as Flash
animations, on the other hand, scale more easily to fit different playback
areas.

Turning off the Java Virtual Machine

Setting the NOJAVA parameter to true in every <EMBED> tag prevents the
browser’s Java Virtual Machine (JVM) from starting if it is not yet running:

<EMBED SRC=”presentation.rpm” WIDTH=300 HEIGHT=134 NOJAVA=true>

This parameter primarily affects Netscape Navigator 4, which does not launch
its JVM until it’s needed. The parameter is recommended because starting the
JVM delays presentation playback unnecessarily. The parameter has no effect
on Internet Explorer, or Navigator 6 or later.

Note: The JVM is required only when you are extending plug-in
functionality with Javascript. In this case, omit NOJAVA entirely
from the <EMBED> tags. See “Javascript and VBScript” on page
484 for more information about using Javascript with the
<EMBED> tag.

Supporting Other Browsers

To accommodate browsers that do not support the Netscape plug-in, use
<NOEMBED> to define a standard hypertext link to your presentation. The
unembedded link follows the <EMBED> tag:
488

CHAPTER 20: Web Page Embedding
<EMBED SRC=”presentation.rpm” WIDTH=320 HEIGHT=240>
<NOEMBED>Play with RealPlayer. </NOEMBED>

In this example, browsers that can play the embedded presentation hide the
text between <NOEMBED> and </NOEMBED>. Other browsers ignore the preceding
<EMBED> tag and display only the hypertext link. The viewer then clicks the
link to play the presentation in RealPlayer.

Using <OBJECT> Tags
Although using just <EMBED> tags for RealPlayer presentations provides
compatibility with both major browsers, you can combine <OBJECT> tags along
with <EMBED> tags. This is a common practice used by Web developers when
working with helper applications that, unlike RealPlayer, do not use ActiveX
technology when Web pages with <EMBED> tags are rendered by Internet
Explorer.

An <OBJECT> tag uses an ID that you select, such as ID=RVOCX, and it must have
the following class ID, which identifies RealPlayer:

CLASSID=”clsid:CFCDAA03-8BE4-11cf-B84B-0020AFBBCCFA”

As with the <EMBED> tag, the <OBJECT> tag also sets the width and height of the
playback area within the browser. The following <OBJECT> tag creates a
playback area 300 pixels wide by 134 pixels high within the Web page:

<OBJECT ID=RVOCX CLASSID=”clsid:CFCDAA03-8BE4-11cf-B84B-0020AFBBCCFA”
WIDTH=300 HEIGHT=134>
... parameters ...
</OBJECT>

Setting <OBJECT> Tag Parameters

The <OBJECT> tag uses the same parameters as an <EMBED> tag, with the
exception that the NOJAVA parameter is not required. With an <EMBED> tag, you
set all parameters within the tag. With <OBJECT>, however, you specify each
parameter (aside from ID, CLASSID, WIDTH, and HEIGHT) in a separate <PARAM>
tag that falls between <OBJECT> and </OBJECT>:

<PARAM NAME=”name” VALUE=”value”>

PARAM, NAME, and VALUE markers can be any case, although in this chapter they
are uppercase. Except for file names, parameter values are not case-sensitive.
Always enclose parameter values in double quotation marks.
489

RealNetworks Production Guide
Specifying the Source

For the <OBJECT> tag’s SRC parameter, you can specify a .rpm file the same as
you do with an <EMBED> tag. This is not necessary, however, because the
<OBJECT> tag’s CLASSID parameter causes the presentation to play in a Web
page. Hence, you can simply link to the SMIL file or clip within just one
<OBJECT> tag on the page, using the appropriate protocol, whether HTTP or
RTSP. (In contrast, each <EMBED> tag must include the same SRC parameter.)

Note: Although you can use a Ramgen URL in a SRC parameter
for the <OBJECT> tag, it is not necessary because the CLASSID
parameter launches RealPlayer whether or not you use
Ramgen.

Combining <EMBED> with <OBJECT>

If you combine <EMBED> and <OBJECT> tags, Internet Explorer browsers on
Windows play the presentation defined through <OBJECT>, while Netscape
Navigator browsers on all platforms, as well as Internet Explorer on the
Macintosh, play the presentation defined through <EMBED>. To combine the
tags, place an <EMBED> tag containing all necessary parameters between the
<OBJECT> and </OBJECT> tags, as shown in the following example:

<OBJECT ID=RVOCX CLASSID="clsid:CFCDAA03-8BE4-11cf-B84B-0020AFBBCCFA"
 WIDTH=320 HEIGHT=240>
<PARAM NAME="SRC" VALUE="plugin.rpm">
<PARAM NAME="CONTROLS" VALUE="ImageWindow">
<PARAM NAME="CONSOLE" VALUE="one">
<EMBED SRC="plugin.rpm" WIDTH=320 HEIGHT=240 NOJAVA=true
 CONTROLS=ImageWindow CONSOLE=one>
</OBJECT>

Adding RealPlayer Controls
With the CONTROLS parameter, you can add RealPlayer controls such as a
play/pause button to your Web page. For example, the following tag displays
the play/pause button in your Web page:

<EMBED SRC=”presentation.rpm” WIDTH=26 HEIGHT=26 NOJAVA=true
CONTROLS=PlayButton>

The following sections describe the embedded RealPlayer controls. You use an
<EMBED> or <OBJECT> tag’s WIDTH and HEIGHT parameters to set the control’s
490

CHAPTER 20: Web Page Embedding
size. Specifying different pixel sizes other than the suggested values scales the
controls larger or smaller. You can also use percentage values for sizes, but this
is recommended only for the image window.

For More Information: When adding more than one control to
your Web page, see also “Linking Multiple Controls” on page
497.

Tip: Unless noted otherwise, all the controls listed below are
compatible with RealPlayer G2, RealPlayer 7, and RealPlayer 8.
With those versions of RealPlayer, however, the controls take
on a different appearance.

Basic Controls

ImageWindow

The CONTROLS=ImageWindow parameter displays a playback window. This
control is not required for audio-only presentations. Even if no other controls
are visible on the page, the user can typically right-click (on Windows) or hold
down the mouse button (on the Macintosh) in the playback area to display a
menu of choices such as Play and Stop. See also “Controlling Image Display”
on page 498.

Suggested pixel width: 176 or greater

Suggested pixel height: 132 or greater
491

RealNetworks Production Guide
All

The CONTROLS=All parameter displays the basic RealPlayer control panel. The
control name “default” also works. Functions include play/pause, stop, fast-
forward, and rewind. Sliders include a position slider and a volume slider with
a mute button that pops up when the speaker button is clicked. Below the
buttons are a clip information field, a status panel, a network congestion
indicator, and a clip timing field.

If you set the size of this control panel to less than the recommended width or
height, the panel drops certain controls instead of squeezing all of the
controls down to a smaller size. This lets you add the control panel to small
pop-up windows, for example, without the controls becoming difficult to use.
This works for RealOne Player or later, but not earlier versions of RealPlayer.

Individual Controls and Sliders

ControlPanel

Use CONTROLS=ControlPanel to display a compact RealPlayer control panel.
Functions include play/pause, stop, fast-forward and rewind. There’s also a

Suggested pixel width: 375

Suggested pixel height: 100

Width less than 336 pixels: network congestion indicator dropped

Width less than 306 pixels: clip timing field dropped

Width less than 226 pixels: Clip Info label, rewind and fast-forward buttons
dropped

Width less than 174 pixels: RealPlayer logo dropped

Height less than 81 pixels: clip information field dropped
492

CHAPTER 20: Web Page Embedding
position slider, along with a volume slider and mute button that pops up
when the speaker button is clicked.

If you set the size of this control to less than the recommended width, the
panel drops certain buttons instead of squeezing all of the buttons down to a
smaller size. This works for RealOne Player or later, but not earlier versions of
RealPlayer.

PlayButton (also PlayOnlyButton)

The CONTROLS=PlayButton parameter displays a play button. This turns into a
pause button when the presentation plays. If your presentation is accessible to
RealPlayers earlier than the RealOne Player, use CONTROLS=PlayOnlyButton
instead. In earlier RealPlayers, the PlayButton control includes both play and
pause buttons, whereas the PlayOnlyButton control includes just the play
button as shown here. Using PlayOnlyButton therefore ensures backwards
compatibility.

PauseButton

The CONTROLS=PauseButton parameter displays a pause button. Because the
PlayButton control turns into a pause button as a presentation plays, the
PauseButton control is generally not necessary with RealOne Player or later. To
ensure backwards compatibility with earlier versions of RealPlayer, however,
use both the PlayOnlyButton and the PauseButton controls.

StopButton

The CONTROLS=StopButton parameter displays a stop button.

Suggested pixel width: 350

Suggested pixel height: 36

Width less than 220 pixels: rewind and fast-forward buttons dropped

Width less than 168 pixels: RealPlayer logo dropped

Suggested pixel width: 36

Suggested pixel height: 26

Suggested pixel width: 26

Suggested pixel height: 26

Suggested pixel width: 26

Suggested pixel height: 26
493

RealNetworks Production Guide
FFCtrl

The CONTROLS=FFCtrl parameter displays a fast-forward button.

RWCtrl

The CONTROLS=RWCtrl parameter displays a rewind button.

MuteCtrl

The CONTROLS=MuteCtrl parameter displays a mute button.

MuteVolume

The CONTROLS=MuteVolume parameter displays a mute button and volume
slider.

VolumeSlider

The CONTROLS=VolumeSlider parameter displays a volume slider.

PositionSlider

The CONTROLS=PositionSlider parameter displays a clip position slider.

TACCtrl

Suggested pixel width: 26

Suggested pixel height: 26

Suggested pixel width: 26

Suggested pixel height: 26

Suggested pixel width: 26

Suggested pixel height: 26

Suggested pixel width: 26

Suggested pixel height: 88

Suggested pixel width: 26

Suggested pixel height: 65

Suggested pixel width: 120

Suggested pixel height: 26
494

CHAPTER 20: Web Page Embedding
The CONTROLS=TACCtrl parameter displays an information field. Clip or
presentation information scrolls vertically through this field when the clip
first plays. The viewer can redisplay this information by clicking the arrow
button. Clicking the “i” button displays the full presentation information in a
pop-up window. With RealOne Player or later, the Clip Info field is dropped if
you set the width of the TACCtrl to less than 220 pixels.

For More Information: For instructions on defining clip or
presentation information, see Chapter 10.

HomeCtrl

The CONTROLS=HomeCtrl parameter displays the RealPlayer logo, which is linked
to the RealNetworks Web site.

Information Panels

InfoVolumePanel

Use CONTROLS=InfoVolumePanel to display presentation information along with
the volume slider and mute button. For more on presentation information,
see “Defining Information for the SMIL Presentation” on page 242.

InfoPanel

Suggested pixel width: 370

Suggested pixel height: 32

Suggested pixel width: 30

Suggested pixel height: 30

Suggested pixel width: 325

Suggested pixel height: 55
495

RealNetworks Production Guide
The CONTROLS=InfoPanel parameter displays the presentation information
panel. For more on presentation information, see “Defining Information for
the SMIL Presentation” on page 242.

Status Panels

StatusBar

The CONTROLS=StatusBar parameter displays the status panel, which shows
informational messages. It also includes the network congestion LED and the
position field, which shows the clip’s current place in the presentation
timeline, along with the total clip length.

If you set the width of the status bar lower than the recommended width, the
panel drops fields instead of squeezing all of the fields down to a smaller size.
This works for RealOne Player or later, but not earlier versions of RealPlayer.

Note: The status bar is included in the All control. If you do not
embed a status bar or status field in your page, error messages
display in the browser’s status bar.

StatusField

The CONTROLS=StatusField parameter displays the message text area of the
status bar. If you do not embed a status field or status bar in your page, error
messages display in the browser’s status bar.

Suggested pixel width: 300

Suggested pixel height: 55

Suggested pixel width: 335

Suggested pixel height: 30

Width less than 330 pixels: network congestion indicator dropped

Width less than 300 pixels: clip timing field dropped

Suggested pixel width: 200

Suggested pixel height: 30
496

CHAPTER 20: Web Page Embedding
PositionField

The CONTROLS=PositionField parameter displays the position field, which shows
the clip’s current place in the presentation timeline, along with the total clip
length.

Linking Multiple Controls

The CONSOLE parameter defines a name that unifies <EMBED> or <OBJECT> tags
so that multiple controls work together. For example, you could create three
separate <EMBED> or <OBJECT> tags to define an image window, a play button,
and a stop button. By using three tags, you can set the size of each control
separately, and define the entire layout with HTML tags. You could put each
control in a different HTML table cell, for example.

To tie controls together, define the same CONSOLE name within each <EMBED>
or <OBJECT> tag, or use one of these predefined names:

_master links the control to all other embedded controls on the page.

_unique links the control to no other embedded controls on the page.

You can have multiple console names for separate presentations. For a page
showing two video clips, for example, you can define the console names video1
and video2. All controls linked by video1 interoperate, as do all controls linked
by video2. But a video1 volume slider, for example, will not affect the volume of
a video2 clip.

Tips for Using Consoles

• Every <EMBED> tag must have a SRC attribute. Tags linked by a console
name should have the same SRC value.

• If the <EMBED> tags in a console group have different SRC values, the first
valid source that RealPlayer finds among those choices becomes the
console source. This may not always be the first source listed.

• Clicking a play button for one console stops playback for other consoles.
This allows multiple consoles to play separate audio tracks or to use the
same image window.

Suggested pixel width: 90

Suggested pixel height: 30
497

RealNetworks Production Guide
Multiple Controls Example

The following example sets up an image window and two sets of controls (a
play button and stop button) for two separate videos, video1.rm and video2.rm.
The predefined console name _master links the image window to both control
sets. The control sets use different console names, however, so they do not link
to each other. Clicking each play button therefore starts a different video.

Because each <EMBED> tag must have a SRC value, the image window in the
following example uses the same source as the first play button. The viewer
simply clicks either play button to start a video. Clicking the other play button
stops the first video and plays the second one:

<EMBED SRC=”video1.rpm” CONSOLE=_master WIDTH=176 HEIGHT=128
NOJAVA=true CONTROLS=ImageWindow>

<H4>Video 1</H4>
<EMBED SRC=”video1.rpm” CONSOLE=video1 WIDTH=44 HEIGHT=26 NOJAVA=true
CONTROLS=PlayButton>
<EMBED SRC=”video1.rpm” CONSOLE=video1 WIDTH=26 HEIGHT=26 NOJAVA=true
CONTROLS=StopButton>

<H4>Video 2</H4>
<EMBED SRC=”video2.rpm” CONSOLE=video2 WIDTH=44 HEIGHT=26 NOJAVA=true
CONTROLS=PlayButton>
<EMBED SRC=”video2.rpm” CONSOLE=video2 WIDTH=26 HEIGHT=26 NOJAVA=true
CONTROLS=StopButton>

Controlling Image Display
The <EMBED> parameters summarized in the following table control aspects of
how clips in an image window play.

The following example shows two of these parameters used in an <EMBED> tag:

<EMBED SRC=”presentation.rpm” WIDTH=50% HEIGHT=50% NOJAVA=true
BACKGROUNDCOLOR=gray CENTER=true>

Parameters for Image Display

Parameter Value Default Function Reference

BACKGROUNDCOLOR name|#RRGGBB black Sets a window color. page 499

CENTER false|true false Centers the clip. page 499

MAINTAINASPECT false|true false Determines clip scaling. page 499

NOLOGO false|true false Suppresses the logo. page 500
498

CHAPTER 20: Web Page Embedding
Setting a Background Color

The BACKGROUNDCOLOR parameter specifies a background color for the image
window. The specified color shows through the clip if a clip uses transparency.
The background color is black by default. You can use a hexadecimal color
value (#RRGGBB) or one of the following color names, shown here with their
corresponding hexadecimal values:

Note: SMIL region background colors override this
background color. For more on setting SMIL region colors, see
“Adding Background Colors” on page 292.

Tip: Appendix C provides background on hexadecimal color
values. Note, though, that the <EMBED> and <OBJECT> tags do
not support rgb(n,n,n) color values that you can use with SMIL.

Centering a Clip

The default value for CENTER is false , which causes the clip to fill the entire
playback area. If you set CENTER to true, the clip is centered within the playback
area and is displayed at its encoded size. So by setting CENTER to true , you can
create a large playback area with WIDTH and HEIGHT and still have the clip play
at its normal size. You cannot use CENTER along with MAINTAINASPECT.

Maintaining a Clip’s Aspect Ratio

The MAINTAINASPECT parameter, which you cannot combine with CENTER,
determines whether the clip’s width-to-height ratio stays constant when the
clip scales to fit the image window. The default value of false causes this ratio
to change as necessary to fill the image window fully. This may distort the
source image.

If you set MAINTAINASPECT to true , a clip’s width-to-height ratio stays constant.
For example, a clip’s width-to-height ratio of 1:1 stays constant even if the
image window’s width-to-height ratio is 3:2. In these cases, the clip is centered
in the image window and scaled until one dimension reaches the window’s
boundaries and the other dimension is within the boundaries. The following

white (#FFFFFF) silver (#C0C0C0) gray (#808080) black (#000000)

yellow (#FFFF00) fuchsia (#FF00FF) red (#FF0000) maroon (#800000)

lime (#00FF00) olive (#808000) green (#008000) purple (#800080)

aqua (#00FFFF) teal (#008080) blue (#0000FF) navy (#000080)
499

RealNetworks Production Guide
illustration shows how clips scale by default, with MAINTAINASPECT set to true ,
and with CENTER set to true.

Clip Scaling with MAINTAINASPECT and CENTER

Suppressing the RealPlayer Logo

When set to true, NOLOGO prevents the RealPlayer logo from displaying in the
image window before clips play. When there are no clips playing, only the
specified background color shows in the window. The parameter is false by
default.

Source Clip

Default Behavior

MAINTAINASPECT
"true"

CENTER
"true"
500

CHAPTER 20: Web Page Embedding
Setting Automatic Playback
The parameters listed in the following table can cause a presentation to start
playing automatically, and to loop continuously or for a specified number of
times.

The following example shows two of these parameters in an <EMBED> tag:

<EMBED SRC=”presentation.rpm” WIDTH=50% HEIGHT=50% NOJAVA=true
AUTOSTART=true LOOP=true>

Starting a Presentation Automatically

When set to true , the AUTOSTART parameter starts playback immediately. When
you have multiple <EMBED> or <OBJECT> tags linked by a CONSOLE name, set
AUTOSTART to true in just one tag. Leaving AUTOSTART out, or setting its value to
false, means that the presentation will not start until the user starts it by
clicking an embedded play button, for example.

Looping a Presentation Continuously

If the LOOP parameter is set to true , the presentation loops continuously until
the viewer stops it. When you have multiple <EMBED> or <OBJECT> tags linked
by a CONSOLE name, set LOOP to true in just one tag. If you leave LOOP out, the
default value of false applies, and the presentation stops after the first
playback. The user can play the presentation again by clicking a play button.

Tip: The LOOP or NUMLOOP parameters will make an entire SMIL
presentation repeat. Within a SMIL file, you can use the
repeatDur and repeatCount attributes to repeat individual clips
or groups. For more information, see “Repeating an Element”
on page 325.

Parameters for Automatic Playback

Parameter Value Default Function Reference

AUTOSTART false|true false Starts presentation automatically. page 501

LOOP false|true false Creates a continuous playback loop. page 501

NUMLOOP integer 1 Loops playback a set number of times. page 502

SHUFFLE false|true false Sets shuff le play for a sequence of clips. page 502
501

RealNetworks Production Guide
Specifying a Number of Loops

If you specify a parameter such as NUMLOOP=2, the presentation plays the
specified number of times and then stops. If you use both LOOP and NUMLOOP,
the LOOP parameter is ignored.

Setting Shuffle Play

The SHUFFLE parameter is for use only with Ram or SMIL files that list a single
sequence of clips. When set to true, SHUFFLE causes RealPlayer to play the clips
in a random order. If you use this parameter with LOOP or NUMLOOP, each loop
may use a different playback order.

For More Information: For information on SMIL sequences, see
“Playing Clips in Sequence” on page 249. For more on Ram file
sequences, see “Writing a Basic Ram File” on page 509.

Laying Out SMIL Presentations
As explained in Chapter 12, you can use SMIL to define separate playback
regions for different parts of a presentation. This lets you lay out two clips
side-by-side, for example. When embedding a SMIL presentation in a Web
page, you can define the layout in SMIL or in HTML. Defining the layout in
SMIL lets you play all the clips together in a single, embedded window. Using
an HTML layout lets you place clips at different spots on the Web page.

Note, too, that a SMIL presentation can open clips in secondary, pop-up
media windows, as well as display HTML pages in RealPlayer’s media browser
and related info panes. These features work with embedded presentations, too.
However, because the media browser and related info panes are not present
with an embedded presentation, all HTML pages meant for these panes
display in a new window of the viewer’s Web browser.

For More Information: The section “Linking to HTML Pages” on
page 373 explains how to open an HTML page through SMIL.

Defining the Layout with SMIL

To control the layout by using SMIL, you set up the regions and their relative
placements in the SMIL file. You then create a Web page playback area large
enough to accommodate all SMIL regions. The SMIL file then produces the
same layout when played through the Web page or RealPlayer. For example, if
502

CHAPTER 20: Web Page Embedding
your SMIL file creates a playback area 400 pixels wide by 300 pixels high, you
define an image window at least as large as this with the <EMBED> or <OBJECT>
tag, as shown in the following example:

<EMBED SRC=”presentation.rpm” WIDTH=400 HEIGHT=300 NOJAVA=true
CONTROLS=ImageWindow CONSOLE=one>

You can then use additional <EMBED> tags linked to the console named one to
provide RealPlayer controls for the presentation.

Tip: Typically, your image window is the same size as your
SMIL root-layout area, which is described in the section “Root-
Layout Area” on page 269.

Defining the Layout with HTML

The second method omits layout information in the SMIL file, defining the
layout with HTML instead. You could place each clip that plays in a SMIL
presentation in a separate cell of an HTML table, for example. Each <EMBED>
or <OBJECT> tag then uses a REGION parameter to define a region name. The
region each clip plays in is denoted by the region attribute in the SMIL clip
source tag:

<textstream src=”news.rt” region=”newsregion”/>

Within the HTML page, the <EMBED> tag that plays news.rt would look like
this:

<EMBED SRC=”presentation.rpm” WIDTH=250 HEIGHT=144 NOJAVA=true
CONTROLS=ImageWindow REGION=newsregion CONSOLE=one>

You define similar <EMBED> tags to create other regions for other clips listed in
the SMIL file. The SRC parameter in each tag lists the same SMIL file. You can
also use additional <EMBED> or <OBJECT> tags linked to the same console to
provide RealPlayer controls for the presentation.

For More Information: The section “Assigning Clips to Regions”
on page 289 explains the use of region attributes in SMIL clip
source tags.
503

RealNetworks Production Guide
504

C H A P T E R
21

 Chapter 21: PRESENTATION DELIVERY
When you finish building your RealPlayer presentation, you place
the clips on Helix Server or a Web server for delivery to your
audience. This chapter explains how to link your Web page to your
clips and SMIL files. It shows how to write a Ram file, a simple text
file that launches RealPlayer and gives it the URL to your clip or
SMIL presentation.

Understanding Linking and URLs
Although the process of linking your Web page to your clips is simple, there
are two types of mistakes that are easy to make:

1. An incorrect URL can prevent a Web browser or RealPlayer from finding a
requested file.

2. An incorrect protocol designation (http://, for example) can keep a clip
from streaming correctly.

The following sections provide an overview of the process of linking your Web
page to streaming clips on a server. The remainder of this chapter then covers
the various options for delivering your presentation.

The Ram File

The most common method of linking your Web page to your clips is through
a Ram file, which is also called a metafile. This file uses the extension .ram and
often has just one line that gives the full URL to your streaming clip or SMIL
presentation. There are several reasons that you use a Ram file rather than
link your Web page directly to your streaming clips:

1. The Ram file launches RealPlayer.

The file extension .ram causes a Web browser to launch RealPlayer to play
the presentation. RealPlayer might not launch when you link directly to a
505

RealNetworks Production Guide
clip. When you link your Web page directly to a Flash Player file (extension

.swf), for example, the browser launches Macromedia’s Flash Player. If you
intend to stream your Flash clip, you need to use a Ram file to launch
RealPlayer instead.

2. The Ram file provides an RTSP URL for clips on Helix Server.

Clips on Helix Server stream over the RTSP protocol, rather than HTTP.
This means that the URL used to request the clips must start with rtsp://
rather than with http://. Because browsers cannot make RTSP requests,
you link your Web page to a Ram file with an HTTP URL. The Ram file
then gives RealPlayer the RTSP URL to your presentation.

For More Information: See the section “The Difference Between
RTSP and HTTP” on page 507.

3. The Ram file can pass parameters to RealPlayer.

Through optional Ram file parameters, you can modify your clip or SMIL
presentation by, for example, playing it double-size. You can also specify
HTML pages that display as a clip plays.

How a Ram File Works

You can link a Ram file to a Web page with a standard <a href> hypertext link.
The following actions occur when a viewer clicks this hypertext link to request
a streaming presentation:

1. The Web browser requests the Ram file from a Web server or Helix Server.

2. The Ram file extension (.ram or .rpm) causes the Web browser to launch
RealPlayer.

3. RealPlayer receives the Ram file and requests the clip or SMIL file from
the Web server or Helix Server.

4. When a SMIL file is used, RealPlayer requests the clips based on the URLs
in the SMIL file.

The Ram File for Embedded Presentations

For presentations in which RealPlayer pops up as a separate application, you
use .ram as the Ram file extension. When you embed a clip or presentation in a
Web page as described in Chapter 20, however, the Ram file uses the file
extension .rpm. RealPlayer still plays the presentation, but it does not launch
as a separate application. Instead, the browser appears to play the clips. Aside
506

CHAPTER 21: Presentation Delivery
for the file extension, there’s no difference between a Ram file for a pop-up
presentation (.ram), and one for an embedded presentation (.rpm).

The Ramgen Alternative to Ram Files

When you stream clips from Helix Server, you have the option of using
Ramgen, a feature that lets you link your Web page directly to your streaming
clips without using a Ram file. Ramgen uses a specially configured URL that
causes the browser to launch RealPlayer and stream clips using RTSP.
Although not suited for all streaming presentations, Ramgen can simplify the
process of linking your Web to your clips in many cases. For instructions on
using Ramgen, see “Using Ramgen for Clips on Helix Server” on page 522.

The Difference Between RTSP and HTTP

To deliver HTML pages and graphics, a Web server uses HyperText Transport
Protocol (HTTP), as you can see in Web page URLs that begin with http://.
HTTP downloads files without regard to timelines, making clips with
timelines more likely to stall. Although Helix Server can also use HTTP, URLs
for media clips streamed by Helix Server begin with rtsp://, which causes Helix
Server to use Real-Time Streaming Protocol (RTSP), Internet standard
protocol set forth by the Internet Engineering Task Force
(http://www.ietf.org/).

Designed specifically for streaming, RTSP enables Helix Server to adjust
streaming data to keep clips playing smoothly. When two clips play side-by-
side, for example, RealPlayer communicates with Helix Server about each
clip’s progress, indicating how much data it needs to keep playback
synchronized. Helix Server can then adjust the data flow to compensate for
changing network conditions, reducing low priority data if necessary to
ensure that crucial data gets through. Communication like this is not possible
through HTTP.

Which URLs Use Which Protocol

When you assemble a RealPlayer presentation, it’s important to understand
clearly which URLs should use HTTP and which should use RTSP:

• RTSP in SMIL and Ram files for clips on Helix Server

Use rtsp:// in URLs in which RealPlayer requests clips from Helix Server.
These URLs occur in SMIL files (.smil) and Ram files (.ram or .rpm).

• HTTP in SMIL and Ram files for clips on Web servers
507

RealNetworks Production Guide
Use http:// in SMIL and Ram file URLs only if the clips are stored on a
Web server instead of on Helix Server. Because a Web server does not use
RTSP, you cannot use rtsp:// in a URL to a clip stored on a Web server.

• HTTP in Web pages

Web page links to a Web server or Helix Server always start with http://.
Web browsers cannot interpret streaming information sent by Helix
Server through RTSP. The Web browser can connect to Helix Server
through HTTP, though, because Helix Server also uses HTTP.

For More Information: For more on SMIL file URLs, see
“Creating Clip Source Tags” on page 207.

Directory Paths and URLs

You typically create your clips and SMIL files on a desktop computer or a
workstation, then transfer them to a server, whether Helix Server or a Web
server, for streaming. If a server is on the same local area network (LAN) as
your computer, you can often just copy the files to the server over the network.
Otherwise, you can usually transfer files to a server over the Internet using
FTP (file transfer protocol).

The Helix Server or Web server administrator can create the content
directories for you, and also set up features such as password authentication
and pay-per-view. It’s important to understand that the paths to the clips on a
server and the URLs used to request the clips are different. For example, a clip
on Helix Server may reside in the following path on a Windows computer
running Helix Server:

C:\Program Files\Real\Helix Server\Content\video1.rm

But the URL used to request the clip may look like this:

rtsp://helixserver.example.com/video1.rm

You’ll need the directory path to transfer the clips to the server, and the URL
to set up the links for requesting the clip. Your Helix Server or Web server can
give you the path to the content directories, and tell you the URLs to use to
request the clips.

Launching RealPlayer with a Ram File
A Ram file is a text file with the extension .ram (.rpm for playback in a Web
page). When a browser receives this file, it launches RealPlayer as a helper
508

CHAPTER 21: Presentation Delivery
application. RealPlayer then requests the clips listed in the Ram file, which
may reside on Helix Server or a Web server. The following sections describe
how to write a Ram file, link it to your Web page, and use Ram file options.

Tip: As described in “Using Ramgen for Clips on Helix Server”
on page 522, Helix Server can cause a browser to launch
RealPlayer without using a Ram file. Although this option
eliminates the need to write a Ram file, it does not include all
of the options that a Ram file provides.

Writing a Basic Ram File

The most basic Ram file has only one line: the full URL to a clip or SMIL file.
A Ram file can also list multiple URLs to different clips, each URL on a
separate line. This causes RealPlayer to play those clips in sequence.

Note: With RealOne Player or later, a Ram file can also contain
multiple URLs to SMIL files and even to other Ram files.
However, earlier versions of RealPlayer cannot play Ram files
that list other Ram files, or more than one SMIL file.

➤ To write a Ram file:

1. Open any editor or word processor that can save files as plain text. On the
top line, enter the full URL of the SMIL file or media clip. Add the full
URL to each subsequent clip or SMIL file on a new line. The following
samples show URLs to the same SMIL file, depending on whether the file
resides on Helix Server, a Web server, or the viewer’s local computer:

Note: Press Enter only to create a new line on which you want
to enter a new URL. Do not press Enter when typing in a long
URL. It’s OK if your text editor wraps the URL to a new line
automatically, though. Only a line break you enter yourself will
cause an error.

Tip: If you do not know the URLs to your clips, check with
your Helix Server administrator or Web server administrator.

Helix Server: rtsp://helixserver.example.com/sample1.smil

Web server: http://www.example.com/sample1.smil

Local: file://sample1.smil
509

RealNetworks Production Guide
For More Information: For more on RTSP URLs, see “Linking to
Clips on Helix Server” on page 216.

2. Save the Ram file as plain text with a .ram extension (played in RealPlayer)
or a .rpm extension (played in a Web browser).

3. Move your Ram file to Helix Server or your Web server. Even if all of your
media clips are on Helix Server, you can place the Ram file on your Web
server. When the browser receives a Ram file, it turns it over to RealPlayer,
which uses the URLs in the file to request clips. Hence the Ram file and
the media clips do not need to reside on the same computer.

4. For .ram files, link your Web page to the Ram file by using an HTML
hyperlink such as this:

click for video

For More Information: For .rpm files, incorporate the link URL
into the <EMBED> tag as described in “Using <EMBED> Tags”
on page 485.

Adding Comments to a Ram File

You can add a comment to a Ram file by adding one or more pound signs (#)
to the beginning of a line. The following example shows two lines commented
out of a Ram file:

Two videos and a SMIL presentation
streamed from Helix Server.
rtsp://helixserver.example.com/video1.rm
rtsp://helixserver.example.com/video2.rm
rtsp://helixserver.example.com/sample2.smil

Streaming Different Clips to Different RealPlayers

Earlier versions of RealPlayer cannot play the same content as RealOne Player
or later. For example, RealPlayer G2 through RealPlayer 8 cannot play
RealVideo 10 clips and SMIL 2.0 presentations. When these players request
this content, the viewer is prompted to update automatically to RealPlayer 10.
Through the Ram file, though, you can specify different clips, presentations,
or sequences for three different classes of RealPlayer:

• RealOne Player through RealPlayer 10

• RealPlayer G2 through RealPlayer 8
510

CHAPTER 21: Presentation Delivery
• RealPlayer 5 and earlier

Using the Ram File Multiple-Player Syntax

The following example illustrates the Ram file syntax you use to support the
different classes of RealPlayers. In this sample, each player requests two
RealVideo clips in sequence. Each clip is encoded with the RealVideo codec
suited to that class of players, as described in “RealVideo Codecs” on page 77.

The following two video clips play for RealOne Player and later:
.RAM_V3.0_START
rtsp://helixserver.example.com/video1_realone.rm
rtsp://helixserver.example.com/video2_realone.rm
.RAM_V3.0_END
The following two clips play for RealPlayer G2 through RealPlayer 8:
rtsp://helixserver.example.com/video1_realG2.rm
rtsp://helixserver.example.com/video2_realG2.rm
--stop--
The following two clips play for RealPlayer 5 and earlier:
pnm://helixserver.example.com/video1_real5.rm
pnm://helixserver.example.com/video2_real5.rm

Tips for Writing Multiple-Player Ram Files

Note the following about the multiple-player Ram file syntax:

• The section that lists the clip, presentation, or sequence for RealOne
Player through RealPlayer 10 must start with:

.RAM_V3.0_START

and end with:

.RAM_V3.0_END

• You must precede each URL meant for RealOne Player and later with two
pound signs (##). This causes earlier versions of RealPlayer to treat the
lines as comments, and ignore the URLs. Because of the start and end
markers, though, RealOne Player and later recognize the lines as URLs.

• The section that lists the URL or URLs for RealPlayer G2 through
RealPlayer 8 must come after the section for RealOne Player or later.

• To stream content to RealPlayer 5 and earlier, add the marker --stop-- after
the RTSP URLs for RealPlayer G2 through RealPlayer 8. Then specify the
pnm:// URLs to the clips.
511

RealNetworks Production Guide
• The URLs after --stop-- must specify the older PNA protocol (pnm://).
When RealPlayer connects, it chooses the URL based on its favored
protocol. For this reason, you cannot list URLS above and below --stop--
that use the same protocol, whether rtsp://, pnm://, or http://.

• For basic information about which streaming formats various versions of
RealPlayer can play, see “Compatibility with Earlier Versions of
RealPlayer” on page 44.

Examples of Linking a Web Page to Clips

The following sections provide some examples of linking a Web page to clips
or a SMIL presentation that resides on Helix Server or a Web server.

Linking to a Single Clip

Suppose you have a single RealVideo clip called video1.rm. You can simply link
your Web page to a Ram file (play_video1.ram) that resides in the same
directory as the Web page:

Play the video!

The Ram file then gives RealPlayer either the full RTSP URL to the clip on
Helix Server:

rtsp://helixserver.example.com/video1.rm

or the full HTTP URL to the clip on a Web server:

http://www.example.com/video1.rm

Linking to an Embedded Clip

Suppose that you’ve embedded a RealVideo clip called video1.rm in your Web
page according to the instructions in Chapter 20. You can link to a Ram file
(play_video1.rpm) that resides in the same directory as the Web page within the
<EMBED> tag:

<EMBED SRC=”play_video1.rpm” WIDTH=300 HEIGHT=134>

The Ram file then gives RealPlayer either the RTSP URL to the clip on Helix
Server:

rtsp://helixserver.example.com/video1.rm

or the HTTP URL to the clip on a Web server:

http://www.example.com/video1.rm
512

CHAPTER 21: Presentation Delivery
Linking to a SMIL Presentation

Linking to a SMIL file is similar to linking to a clip. However, because a SMIL
file contains the URLs to clips in the presentation, the SMIL file itself can
reside on any server. Suppose you have a SMIL file named presentation.smil.
You can simply link your Web page to a Ram file (play_presentation.ram) that
resides in the same directory as the Web page:

Play the video!

The Ram file should give RealPlayer the full RTSP URL to the SMIL file if it
resides on Helix Server:

rtsp://helixserver.example.com/presentation.smil

or the HTTP URL to the file if it resides on a Web server:

http://www.example.com/presentation.smil

The SMIL file itself should contain the full URLs to clips in its source tags, as
in the following example:

<video src=”rtsp://helixserver.example.com/video1.rm” .../>

For More Information: See “Writing Clip Source URLs” on page
213 for more information on SMIL file URLs.

Passing Parameters Through a Ram File
A Ram file provides a simple and convenient way to set parameters that open
HTML pages in the RealPlayer related info and media browser panes. Ram file
parameters can also affect the clip itself by shortening its playback time, for
instance. In the Ram file, separate the first parameter from the clip URL with
a question mark (?), as shown here:

URL?parameter=value

To set two or more parameters for the same clip, precede the second and all
subsequent parameters with ampersands (&) instead of question marks:

URL?parameter=value¶meter=value¶meter=value...

Note the following about Ram file parameters:

• Parameter values that contain spaces need to be enclosed in double
quotation marks. Single values do not require quotation marks, though.

• Do not press Enter to create a line break when adding parameters to a clip
URL. The presentation URL and all parameters must be on a single line.
513

RealNetworks Production Guide
You can turn your text editor’s word wrap feature on, though, so that the
line wraps automatically.

• Previous versions of RealPlayer that do not support a specific parameter
will ignore the parameter and still play the media.

Tip: Appendix G summarizes the Ram file parameters that the
following sections describe in detail.

Opening a URL in an HTML Pane

For each clip in the Ram file, you can provide the URL to one HTML page that
opens in the RealPlayer related info pane. You can also provide a URL to an
HTML page that opens in the media browser pane. This feature is useful when
you want to supplement a clip with one or two HTML pages, but you don’t
need all the features provided by SMIL. The following table lists the Ram file
HTML page parameters.

Ram File Parameters for Opening an HTML Page

Parameter and Value Function

rpcontexturl=URL|
_keep

Displays the specified URL in the related info pane, or
keeps the existing related info pane open. Use a fully
qualified HTTP URL. If testing with a local clip, use the
full, absolute path to the clip on your computer.

rpcontextheight=pixels Sets the pixel height of the related info pane. If no height is
specified, RealPlayer uses the height of the media clip. See
“Related Info Pane Sizing” on page 34 for more
information.

rpcontextwidth=pixels Sets the pixel width of the related info pane. If no width is
specified, a default of 330 pixels is used.

rpcontextparams=
URL_parameters

Appends parameters to the rpcontexturl URL. HTML page
parameters are generally separated from the page URL with
a question mark. In a Ram file, however a question mark
indicates the start of the Ram file parameters. Hence, if you
need to append parameters to your related info page URL,
do so through rpcontextparams.

 (Table Page 1 of 2)
514

CHAPTER 21: Presentation Delivery
Background Color Values

For rpvideofillcolor, use one of the following:

• A color name, as described in “Using Color Names” on page 555

• An RGB value, as described in “Specifying RGB Color Values” on page 557

• A six-digit hexadecimal value as described in “Defining Hexadecimal
Color Values” on page 556.

With a hexadecimal color value, substitute the escape character %23 for the
pound sign (#), which, in a Ram file, signifies the start of a comment. For
example, suppose that you want to match the following hexadecimal color
used in a related info HTML page:

<BODY BGCOLOR=”#FF5A4E”>

You would add the following to your Ram file:

rpcontexttime=
dd:hh:mm:ss.x

Specifies the time at which the HTML page displays in the
related info pane, relative to the start of the media clip.
Only the seconds (ss) field is required, so rpcontexttime=10
means to open the related info pane 10 seconds after the
clip starts to play. If no time is specified, the page opens
when the clip starts to play. Use of start=hh:mm:ss.x with
the clip does not affect when the HTML page displays.

rpurl=URL Specifies the URL to display in the media browser pane.
This URL always opens when the clip begins to play. If
testing with a local clip, use the full, absolute path to the
clip on your computer.

rpurlparams=
URL_parameters

Appends parameters to the rpurl URL. If you need to add
parameters to your media browser page URL, do so
through rpurlparams.

rpurltarget=_rpbrowser
|name

Sets the target for rpurl as the media browser pane when
you use _rpbrowser, or as a secondary browsing window if
you use any other name. Because the default is _rpbrowser,
you can omit this parameter to use the media browser.

rpvideofillcolor=
color_value

Specifies a background color for the media playback pane,
allowing you to match the backgrounds for the media
playback and related info panes. Black is the default color.
See below for more about colors.

Ram File Parameters for Opening an HTML Page (continued)

Parameter and Value Function

 (Table Page 2 of 2)
515

RealNetworks Production Guide
rpvideofillcolor=%23FF5A4E

Examples of Opening HTML Pages

Opening a Page in the Related Info Pane

The following example plays a clip and opens an HTML page in a related info
pane that is 250 pixels high and 280 pixels wide:

rtsp://helixserver.example.com/video1.rm?rpcontextheight=250
&rpcontextwidth=280&rpcontexturl=”http://www.example.com/relatedinfo1.html”

Opening a Page in the Media Browser Pane

The next example opens an HTML page in the media browser pane when the
clip begins to play:

rtsp://helixserver.example.com/video2.rm?rpurl=”http://www.example.com/index.html”

Keeping the Same Context Pane, But Changing Background Colors

The following sample Ram file plays two clips in sequence. After the first clip
plays for 5.5 seconds, the Ram parameters open an HTML page in a related
info pane that is 350 pixels high by 300 pixels wide. The media playback
pane’s background color is set to rgb(30,60,200). When the second clip plays,
the same related info pane is kept onscreen, but the media playback pane’s
background changes to red:

First URL that opens a related info pane.
rtsp://helixserver.example.com/video3.rm?rpcontextheight=350
&rpcontextwidth=300&rpcontexturl=”http://www.example.com/relatedinfo2.html”
&rpcontexttime=5.5&rpvideofillcolor=rgb(30,60,200)
#
Second URL that keeps the same related info pane,
but changes the media playback pane’s background color.
rtsp://helixserver.example.com/video4.rm?rpcontexturl=_keep
&rpvideofillcolor=red

Tips for Opening HTML URLs

• HTML panes do not display when the media plays at full-screen size.
Therefore, you should not open an HTML page when also using
screensize=full.

• Do not include the URL to an HTML page when embedding a clip or
SMIL presentation in a Web page through a .rpm file.

• To open more than one HTML URL for a clip in the related info or media
browser pane at any point during the presentation, write a SMIL file that
516

CHAPTER 21: Presentation Delivery
includes the HTML URLs in the markup as described in “Linking to
HTML Pages” on page 373.

Controlling How a Presentation Initially Displays

In the Ram file, you can set several parameters that control how RealPlayer
initially displays a clip or SMIL presentation. You can play a clip at double its
normal size, for example, play part of a clip, or open the RealPlayer at full-
screen size. To control these characteristics, add one or more of the following
parameters to the Ram file URL.

Ram File Parameters for Setting the Initial Display

Parameter and Value Function

screensize=double|
full|original

Opens the clip or presentation at double its normal size, at
full-screen size, in which the monitor looks like a television
set, or at its original size, which is the default.

mode=normal|
theater|toolbar

Opens RealPlayer in one of three modes. In normal mode,
which is the default, controls are grouped around the media
playback pane. In toolbar mode, which is available only to
subscribers of the premium services, the controls appear at the
bottom of the computer screen. In theater mode, controls are
put in toolbar mode, and the media presentation appears
centered on a darkened screen.

start=hh:mm:ss.x Starts the clip at the specified point in its timeline. Only the
seconds field is required, so start=45 begins the clip at its 45-
second mark. This parameter shortens the total time the clip
plays, but it does not delay the clip from starting its playback.

end=hh:mm:ss.x Ends the clip at the specified point in its timeline. Only the
seconds field is required. For example, end=3:30 means to end
the clip when it reaches its internal mark of three minutes and
thirty seconds. The total time that the clip plays is the end
time minus the start time.

showvideocontrols
overlay=0|1

When set to 0, hides the sizing overlay that appears brief ly
when the viewer moves the screen pointer over the media
playback pane. (The overlay, which appears in the upper-left
corner of the media playback pane, has controls to display the
media at different sizes.) This parameter works only with
RealOne Player version 2 and higher.
517

RealNetworks Production Guide
Examples of Setting a Presentation’s Initial Display

Opening a Clip in Full-Screen Mode

The following example opens a SMIL presentation in full-screen mode:

rtsp://helixserver.example.com/sample1.smil?screensize=full

Opening a Clip at Normal Size in Theater Mode

The next example opens a RealVideo clip at double its normal size, and sets
RealPlayer to its theater mode:

rtsp://helixserver.example.com/video1.rm?screensize=double&mode=theater

Playing a Clip Excerpt

The final example plays a 30-second excerpt from the middle of a clip:

rtsp://helixserver.example.com/audio1.rm?start=55&end=1:25

Tips for Setting the Initial Display

• HTML panes do not display when the media plays at full-screen size.
Therefore, you should not open an HTML page when also using
screensize=full.

• RealPlayer may not offer full-screen mode on all operating systems. If
RealPlayer for a given operating system does not offer full-screen mode, it
plays the presentation at its normal size.

• If RealPlayer offers full-screen mode but has not yet played a clip full-
screen, it may first perform a test of this playback mode.

• The double-size and full-screen modes work best for high-speed clips.
They are not recommended for presentations delivered through modems.

• Always test playback when using double and full-screen modes to ensure
that the visual quality is acceptable. Some types of clips may not scale well.

• In full-screen mode, the viewer can control RealPlayer through a
contextual menu displayed by right-clicking (on Windows) or holding
down the mouse button (on Macintosh).

• Do not use these options when embedding a presentation in a Web page
through a .rpm file.

• RealPlayer displays a presentation’s elapsed time in one-second
increments. You can click the time-elapsed field to display time values to
1/10th of a second, however. This can help you decide what start and end
timing values you want to use in a Ram file.
518

CHAPTER 21: Presentation Delivery
• For a SMIL presentation, use clipBegin and clipEnd in the clip source tag,
rather than start and end in the Ram file, to play an excerpt from a clip.
For more information, see “Setting Internal Clip Begin and End Times”
on page 318.

• The showvideocontrolsoverlay parameter is intended primarily for media
presentations that include interactive elements, such as Flash clips or
SMIL presentations. It allows you to hide the overlay so that it does not
interfere with buttons or controls that are part of the media.

Overriding Title, Author, and Copyright Information

A streaming clip often encodes title, author, and copyright information. When
you encode a RealAudio or RealVideo clip, for example, you can add this
information to the clip through RealProducer. Through the Ram file, you can
override this title, author, and copyright information. These parameters are
compatible with earlier versions of RealPlayer.

For More Information: For information about where this
information displays in RealPlayer, see “Where Title, Author,
and Copyright Information Displays” on page 240.

Example of Setting Title, Author, and Copyright Information

The following example sets title, author, and copyright information for a
video clip:

rtsp://helixserver.example.com/introvid.rm?title="Introduction to RealPlayer
Production"&author="RealNetworks, Inc."©right="©2001,
RealNetworks, Inc."

Title, Author, and Copyright Parameters

Parameter and Value Function

title=”text” Specifies the clip title.

author=”text” Indicates the clip author. This information displays in the
Artist field of the clip information panel.

copyright=”text” Gives the copyright notice. You can use the HTML code
© to create the standard copyright symbol.
519

RealNetworks Production Guide
Setting Clip Information

The clipinfo parameter works with RealOne Player or later, and is ignored by
earlier RealPlayers. Geared for online music, it allows you to encode
information such as the artist name, album, genre, and so on, which displays
when the viewer chooses the File>Clip Properties>View Clip Info command, or
presses Ctrl+i. The clipinfo parameter uses one long value surrounded by
double quotation marks. Within the quotes, you separate the subvalues with
vertical lines, or “pipes,” as shown here:

clipinfo=”name=value|name=value|name=value...”

The following table describes the name and value pairs that you can use with
clipinfo. You can use any set of values, and list them in any order. Most text
values can be over 100 characters long.

Note: Do not use the title, author, and copyright parameters
described in “Overriding Title, Author, and Copyright
Information” on page 519 along with clipinfo.

Using Text Escape Characters

To use certain text characters in a value for the clipinfo parameter, you must
use the character’s corresponding escape code. This is because certain
characters represent syntax components. A pipe (|) represents the start of a
new value, for example, so to use a pipe within a value, you must use the

Clipinfo Parameter Values

Name and Value Function

title=text Gives the clip title.

artist name=text Indicates the artist name.

album name=text Gives the album name. If you specify an album name and do
not also display an HTML page in the related info pane,
RealPlayer displays in that pane a standard page that lists the
artist, album, year, and genre values. The viewer can hide this
information, though, with View>Album Info>Hide.

genre=text Indicates the clip genre, such as Rock or Jazz.

copyright=text Gives the copyright notice.

year=text Indicates the year the content was released.

cdnum=number Supplies the CD track number.

comments=text Provides any additional comments.
520

CHAPTER 21: Presentation Delivery
escape code %7C. The following table lists some common text characters that
you can add through escape codes.

You can enter other common text characters, such as commas, periods, and
colons directly into clipinfo parameter. Conversely, you can display any text
character, including letters and numbers, by using an escape code that starts
with % followed by the character’s ASCII hexadecimal value. You can create an
asterisk (*) with the escape code %2A, for example.

For More Information: Visit http://www.asciitable.com for a
full list of ASCII codes.

Example of Setting Clip Information

This example sets the clipinfo parameter for an audio clip:

rtsp://helixserver.example.com/song1.rm?clipinfo="title=Artist of the Year|
artist name=Your Name Here|album name=My Debut|genre=Rock|
copyright=2001|year=2001|comments=This one really knows how to rock!"

The following figure illustrates how this information appears in the clip
information panel (Ctrl+i).

Text Character Escape Codes

Name Character Escape Code

ampersand & %26

apostrophe ‘ %27

backslash \ %5C

carat ^ %5E

double quote “ %22

greater than sign > %3E

left bracket [%5B

less than sign < %3C

percent sign % %25

pipe | %7C

pound sign # %23

right bracket] %5D
521

RealNetworks Production Guide
Clip Information

Using Ramgen for Clips on Helix Server
With Helix Server, you can use Ramgen to launch RealPlayer automatically,
eliminating the need to write a separate Ram file. Your Web page URL simply
points to your media clip or SMIL file on Helix Server and includes a ramgen
parameter. If your Helix Server does not use Ramgen, you can write a Ram file
as explained in “Launching RealPlayer with a Ram File” on page 508. A Ram
file also enables you to use some RealPlayer features, such as playing a clip at
double or full-screen size.

The following illustration shows the process of requesting a presentation
through Ramgen. This example uses a SMIL file that coordinates multiple
clips, but you can also link to a single clip directly without using SMIL.
522

CHAPTER 21: Presentation Delivery
Requesting a Presentation from Helix Server Using Ramgen

1. Using HTTP, the Web browser requests the SMIL file from Helix Server.
The URL includes a /ramgen/ parameter that invokes Ramgen.

2. Helix Server’s response causes the Web browser to launch RealPlayer as a
helper application and to give it the URL to the SMIL file.

3. RealPlayer requests the SMIL file from Helix Server using RTSP.

4. With the information in the SMIL file, RealPlayer requests and receives
the streaming media clips.

Linking Your Web Page to Helix Server Using Ramgen

With your clips on Helix Server, link your Web page to the SMIL file by using
an HTML hypertext link that looks like the following:

...
523

RealNetworks Production Guide
If the presentation plays back directly in the Web page, the URL occurs within
an <EMBED> tag and looks like this:

SRC=”http://helixserver.example.com:8080/ramgen/media/sample.smil?embed”

In these examples, the /ramgen/ parameter causes the Web browser to launch
RealPlayer without the use of a separate Ram file. This parameter designates a
virtual directory in Helix Server, and can be followed in the URL by actual
directory listings. The following table describes the components of these
URLs. Contact your Helix Server administrator to get the actual Helix Server
address, HTTP port, and directory structure.

URL Components in a Web Page Link to Helix Server

URL Component Function

http:// This causes the browser to contact Helix Server through
HTTP. (Web browsers do not use RTSP.)

helixserver.example.com This address varies for each Helix Server. It typically uses
an identifier such as helixserver instead of www. It may
also use a numeric TCP/IP address, such as 204.71.154.5.

:8080 This is the port Helix Server uses for HTTP connections.
Separate the port and address with a colon. You can leave
the port number out if Helix Server uses port 80 for
HTTP connections. Include the port number if Helix
Server uses any port other than 80 for HTTP.

/ramgen/ This parameter launches RealPlayer without the use of a
separate Ram file.

/media/ Following /ramgen/, the URL may list other directories,
depending on where the clip resides on Helix Server.

sample.smil This is the SMIL file for your presentation. If you have
only one clip to stream, you can link directly to that clip
instead of to a SMIL file.

?altplay=file.ext This Ramgen option specifies an alternate presentation
created for earlier versions of RealPlayer. See “Listing
Alternative Presentations with Ramgen” on page 525.

?embed This Ramgen option embeds the presentation in a Web
page. See Chapter 20 for complete information on Web
page playback.
524

CHAPTER 21: Presentation Delivery
Listing Alternative Presentations with Ramgen

With altplay, you can use a single link to stream one clip to RealPlayer G2 and
later, while streaming older clips to RealPlayer 5 and earlier. Suppose that you
have a RealVideo 5 clip and a RealVideo 9 clip laid out using SMIL. You link to
the SMIL file using Ramgen as described in the preceding section, and you
include altplay to list the older clip:

This link instructs Helix Server to point RealPlayer G2 or later to sample.smil.
Earlier versions of RealPlayer receive the URL to old_sample.rm. Helix Server
uses the streaming protocol appropriate for each RealPlayer version, whether
RTSP or the older PNA.

Note: Because altplay specifies the clip, not a Ram file, the
older clip must reside in the same directory as the new content.

Tip: A Ram file gives you more f lexibility for specifying
different clips for different versions of RealPlayer. For more
information, see “Streaming Different Clips to Different
RealPlayers” on page 510.

Combining Ramgen Options

The question mark operator (?) separates Ramgen options from the main
URL. To use multiple Ramgen options, you use a question mark before the
first option and separate the remaining options with ampersands (&). The
order of options does not matter. For example, the following link uses altplay
and embed:

You can use the ? operator to include earlier Ram file options when using
altplay. If your Ram file URL for a RealVideo 5 clip specified an end time, for
example, include that option in the Ramgen URL after altplay. The following
example shows an end time set for old_sample.rm:

Hosting Clips on a Web Server
If you do not have access to Helix Server, you can host your presentation on a
Web server. Although not as robust as Helix Server streaming, Web server
525

RealNetworks Production Guide
playback provides a reasonable method for delivering simple presentations to
a small number of viewers. The following sections describe features available
with Web servers, and discuss limitations you may encounter when using a
Web server instead of Helix Server.

Web Server MIME Types

To download a RealPlayer presentation from a Web server, you must configure
the server with the MIME types listed in the following table. The Web server
administrator can configure the MIME types properly.

GZIP Encoding for Large Text Files

Some Web servers support GZIP encoding for delivering large text files,
cutting download time for these files 30% or more. RealPlayer 8 through
RealPlayer 10 on any operating system can decode a GZIP file automatically.
This helps speed the playback of presentations that include large text files.
Refer to your Web server documentation for information about creating GZIP
files from text files.

Tips for Using GZIP

• Use GZIP only for text files such as SMIL (.smil), RealText (.rt), and
RealPix (.rp). It’s generally not necessary to use GZIP with Ram files (.ram
and .rpm).

• Using GZIP is never required, and the utility generally provides benefits
only when streaming text files that are larger than a few Kilobytes in size.

Web Server MIME Types for RealPlayer Files

File Type Extension MIME Type

Ram .ram audio/x-pn-realaudio

embedded Ram .rpm audio/x-pn-realaudio-plugin

SMIL .smil and .smi application/smil

RealAudio .ra audio/x-pn-realaudio

RealVideo .rm application/x-pn-realmedia

Flash .swf application/x-shockwave-flash

RealPix .rp image/vnd.rn-realpix

RealText .rt text/vnd.rn-realtext
526

CHAPTER 21: Presentation Delivery
• Do not use GZIP with streaming media clips, such as RealVideo (.rm) or
Flash (.swf), or graphics files such as JPEG, GIF, or PNG. These clips are
already compressed. Plus, RealPlayer cannot decode a GZIP file until it
receives the entire file. Hence, GZIP files download rather than stream.

• You do not need to include the .gz extension, which the GZIP utility adds
to files, in your Ram or SMIL file URLs. Use each file’s standard
extension. The Web server and RealPlayer locate the GZIP file
automatically, as long as your URL specifies the correct directory and file
name.

• You can use GZIP encoding with either static or dynamically generated
text files.

Limitations on Web Server Playback

Because Web servers are not designed to manage bandwidth or keep multiple
clips synchronized, presentations delivered by a Web server are more likely to
stall than when streamed by Helix Server. To ensure that a presentation hosted
by a Web server plays as smoothly as possible, observe the following points.

No SureStream Clips Encoded for Multiple Bandwidths

A Web server cannot send just one stream from a SureStream clip encoded for
several bandwidths. Instead, it downloads the entire clip, causing a very high
preroll. You must therefore encode each RealAudio or RealVideo clip for just
one bandwidth. When using RealProducer, select the option for Web server
playback and choose your target audience. To support multiple bandwidths,
encode separate clips for various bandwidths and use SMIL to let RealPlayer
choose which clip to play.

For More Information: For more on using SMIL to list clip
choices, see “Switching Between Bandwidth Choices” on page
448.

No Secure RealAudio and RealVideo Clips

When you encode RealAudio and RealVideo clips with RealProducer, you have
an option to prevent RealPlayer users from recording the streamed clips to
their computers. This feature works only when Helix Server streams the clips.
When a Web server delivers the clips, users still cannot record the clips
through RealPlayer, but their Web browsers will cache the clips. Additionally,
527

RealNetworks Production Guide
any user can click on your Web page hypertext links and use Save as...
commands to download the clips from the Web server.

Limited Ability to Keep Parallel Clips Synchronized

A Web server does not consider clip timelines when downloading data. Nor
does it receive feedback from RealPlayer about the presentation’s progress.
Web server playback therefore makes it harder for RealPlayer to keep clips
synchronized. A presentation that plays large clips in parallel may stall when
the RealPlayer connection has little bandwidth to spare.

No Way to Set Image Streaming Speeds

As the section “Setting a Clip’s Streaming Speed” on page 208 explains, you
can set an image clip’s streaming speed with a <param/> tag when you use
Helix Server. This SMIL attribute has no effect on presentations delivered
with a Web server, however. A Web server will download the image as quickly
as possible, which may interfere with other clips that display at the same time.

RealPix Presentations Require Clip Size Information

Helix Server determines when to stream each RealPix image based on the
image’s place in the presentation timeline. Because a Web server cannot do
this, you must indicate each image’s file size in the RealPix markup. This
enables RealPlayer to calculate when to request an image from the Web server
so that all image data has arrived by the time the image displays. If the file size
information is missing, RealPlayer requests all images when the presentation
starts, causing a high preroll. For more information, see “Indicating the Image
Size for Web Servers” on page 164.

SMIL File Optional

When delivering a single clip or a few clips played in sequence, you do not need
a SMIL file. Instead, you can simply list the clips in order when writing your
Ram file, as described in “Launching RealPlayer with a Ram File” on page 508.
However, you can also have your Ram file specify a SMIL file that lists the clip
locations, creates a layout, times the presentation, and so on.

Note: RealNetworks does not recommend using long or
complex SMIL files when delivering presentations with a Web
server. Limit your SMIL file to a few clips played in sequence or
in parallel.
528

CHAPTER 21: Presentation Delivery
SMIL Internal Timing Commands Do Not Work

Although you can use SMIL to lay out and time your presentation, you should
not use the clipBegin and clipEnd attributes. A Web server cannot begin to
download a clip at a certain point in its timeline. With clipBegin=“5min” , for
example, RealPlayer must wait until it has received the first 5 minutes of clip
data before it can play the clip. This results in an unacceptably long wait.

For More Information: “Setting Internal Clip Begin and End
Times” on page 318 describes these SMIL commands.

No Presentation Seeking

Because a Web server cannot jump to a new position in a clip’s timeline, the
RealPlayer position slider cannot fast-forward the clip. If the viewer moves the
slider forward, playback pauses as the clip continues to download at its
normal rate. RealPlayer resumes playback once the clip data reaches the
specified timeline position.

No RTSP URLs

Because Web servers do not support RTSP, all URLs in presentations hosted
by Web servers should begin with http://. This includes all URLs in a SMIL file
or Ram file.

No Live Broadcasting

Live broadcasting is not possible because Web servers can download only clips
that are stored on disk.

Testing Your Presentation
Use the following guidelines to make sure your presentation works well and
reaches its target audience:

• Test your presentation in “real world” conditions. If you target 56 Kbps
connections, for example, request the presentation over a 56 Kbps
modem.

• Check that the presentation has a preroll (initial buffering) under 15
seconds. After preroll, the presentation should not rebuffer under normal
network conditions.

For More Information: See “Buffering” on page 45.
529

RealNetworks Production Guide
• Verify that video and audio quality is acceptable.

• For a multiclip presentation, verify that clips stay synchronized. Ensure
that no stalling occurs because of too many clips playing at the same time,
or a single clip requiring too much bandwidth. Make sure that clips
introduced during a presentation in progress do not stall playback by
requiring too much buffering when they start.

• Make sure that your presentation works well for an “average” CPU for
your audience. For general Web delivery, test playback on both Pentium
and Power Macintosh computers with clock speeds around 300 MHz.

Tip: If your presentation is CPU-intensive because it uses
complex Flash animation or high-bandwidth video, for
example, note this in your Web page.

• When streaming RealAudio clips, ensure that sound quality is acceptable.
You may need to experiment with RealAudio codecs to find the best
balance between clip bandwidth use and sound quality.

• Test all hypertext links and interactive functions.

• When embedding a presentation in a Web page, verify that the image
window has the correct location and controls.

Using RealNetworks Logos
When you create RealPlayer content, RealNetworks encourages you to add
RealPlayer logos to your Web page. You can provide a RealPlayer download
link button, for example, so that users can get RealPlayer from RealNetworks’
Web site and view your content. You can read RealNetworks’ trademark
policies and get RealPlayer logos at the following address:

http://www.realnetworks.com/company/logos/index.html
530

P A R T
IX

Par t IX: BASIC INFORMATION
Whether you’re a novice or a professional, these appendixes will
help you as you build your presentation. Appendix A takes up
basic questions beginning users often ask. Once you become
more familiar with RealPlayer, Appendix B will point you to
areas of this guide that address specif ic production issues.
Appendix C explains color values used with markup such as
SMIL, RealText, and RealPix.

A P P E N D I X
A

 Appendix A: BASIC QUESTIONS
This appendix, provided for the beginning streaming media creator,
answers often-asked questions about producing clips for RealPlayer.
It also provides URLs for Web sites where you can find tools and
helpful information about developing streaming media
presentations.

Playing Media with RealPlayer
RealPlayer plays the media clips that you create. It can also display HTML
pages that accompany your media presentation. You can download RealPlayer
from http://www.real.com. See “Step 2: Learn the RealPlayer 10 Interface” on
page 29 for an introduction to the RealPlayer interface.

Is a subscription required to view media with RealPlayer?

No. RealPlayer includes a subscription service that provides premium media
content and music. But RealPlayer is designed to be a general-purpose media
player for any type of free or paid media content.

Must a presentation played in RealPlayer include HTML pages?

No. RealPlayer can display HTML pages along with media, a combination that
greatly enhances the viewing experience. You can also stream media alone,
though, without displaying HTML pages along with your clips.

What HTML page technologies does RealPlayer support?

On Microsoft Windows, RealPlayer uses the existing version of Internet
Explorer. Because Internet Explorer 4 is the earliest version that functions
with RealPlayer, writing HTML content that can play in this browser
guarantees access to the widest possible audience. This supported set of
technologies includes Javascript 1.2 and Cascading Style Sheets 1 (CSS1).
533

RealNetworks Production Guide
Can I embed streaming media directly in a Web page?

Yes. You can still use RealPlayer to embed media clips directly into any Web
page, as described in Chapter 20. However, the native RealPlayer interface
provides an easier way to coordinate media and HTML pages, eliminating the
cumbersome markup required to embed a presentation.

How can I protect copyrights on media?

RealNetworks provides extensive digital rights management technology that
allows you to protect copyrights for valuable media assets. You can learn more
about this suite from the following Web page:

http://www.realnetworks.com/products/drm/index.html

Creating Streaming Clips
RealProducer is the basic tool you use to create clips. Both the RealProducer 10
User’s Guide and the product’s online help guide you through the encoding
process. This production guide provides background information and tips on
creating high-quality streaming media.

How do I make streaming audio and video clips?

You start with an audio or video source file in a digitized format on your
computer. You then select the file and set encoding options. The encoding
process creates a new streaming clip, leaving the source file unchanged.

Can I encode RealVideo directly from a video camera?

Yes. RealProducer accepts live video input from a camera and live audio input
from a microphone. The camera and microphone connect to an audio/video
capture card on your computer. RealProducer then lets you select the live
input as the source. In this case, you go directly from live input to encoded clip
without creating a digitized source file.

How do I ensure the best quality for streaming clips?

Quality starts at the source. You need high-quality video and audio input for
RealProducer to create high-quality streaming clips. Chapter 3 and Chapter 4
include tips on producing good audio and video, respectively. If you are new to
media production, learn your editing hardware and software thoroughly,
paying close attention to the manufacturers’ recommendations for producing
high-quality media files.
534

APPENDIX A: Basic Questions
What other clips can I stream?

In addition to audio and video, RealPlayer can play the following types of
clips:

• Macromedia Flash animation

• GIF, JPEG, and PNG images

• RealPix clips for streaming slideshows

• RealText clips for streaming text

Getting Production Tools
To produce streaming media clips, you need audio and video production tools
as well as RealProducer to handle the encoding.

What audio and video editing tools can I use?

You can use any hardware or software designed for capturing and editing
audio or video. The digitized output must be in a format that RealProducer
accepts, however. Some video editing programs save digitized video in a
proprietary format that RealProducer cannot read. However, these programs
typically let you export the video to a common format that RealProducer
accepts, such as AVI, QuickTime, or MPEG.

Tip: Check http://www.real.com/accessories/index.html for
hardware and software tools that can help you with capturing
and editing audio or video.

What digitized audio and video formats does RealProducer accept as input?

RealProducer accepts many common audio and video formats. These may vary
by operating system, though. RealProducer on Macintosh accepts the formats
widely used on the Macintosh, such as QuickTime, whereas RealProducer on
Windows or Unix supports the formats widely used on those operating
systems. Check the RealProducer manual for your operating system for a list
of accepted formats. Information is also available at the following Web page:

http://www.realnetworks.com/products/producer/features.html

Where can I get RealProducer?

RealNetworks makes versions of RealProducer for Windows and Linux. You
can download RealProducer from RealNetworks’ Web site:
535

RealNetworks Production Guide
http://www.realnetworks.com/products/producer/index.html

How do I create a streaming slideshow from still images?

You can create RealPix presentations using the RealPix markup language,
which is described in Chapter 7.

How do I create streaming Flash animation?

You create animation with Macromedia Flash. You can develop animations
with Flash 2, 3, or 4. Chapter 5 provides tips for making Flash animation
stream well to RealPlayer. It doesn’t explain how to create Flash animations,
however. You can learn more about Flash from Macromedia’s Web site:

http://www.macromedia.com/software/flash/

Using SureStream
SureStream provides advanced streaming technology for RealPlayer. For more
information about SureStream, read “SureStream RealAudio and RealVideo”
on page 49.

What is SureStream?

SureStream is a technology that lets a single RealAudio or RealVideo clip
stream at different bit rates. It does this by bundling into a single clip multiple
streams, each of which runs at a different bit rate. You can make a SureStream
clip that streams at either 28.8 Kbps or 56 Kbps, for example. When users
request the clip, they automatically receive the stream that best matches their
RealPlayer connection speed.

How do I make a SureStream clip?

Using RealProducer, you can choose to use SureStream when you encode
audio or video input. The number of SureStream streams you can encode in
the clip depends on the type of RealProducer you use. RealProducer Basic
encodes three speeds per clip, whereas RealProducer Plus encodes an
unlimited number of speeds per clip.

Can I use SureStream with a Web server?

No. A SureStream clip has several streams encoded in a single clip. Unlike
Helix Server, a Web server cannot extract a specific stream to send to
536

APPENDIX A: Basic Questions
RealPlayer. If you plan to deliver clips from a Web server, you need to set
RealProducer to use single-rate encoding.

Writing SMIL Files
Chapter 8 explains the basics of SMIL. Appendix B explains how to do some
common tasks with SMIL. Appendix D provides a SMIL reference you can use
once you are comfortable with SMIL.

What is SMIL?

Pronounced “smile,” SMIL stands for “Synchronized Multimedia Integration
Language.” It is an industry-standard markup language used to lay out and
time streaming media presentations. SMIL works for RealPlayer the way
HTML works for a Web browser.

Is it necessary to use SMIL?

Not always. When you want to stream just one clip, such as a single RealVideo
clip, you don’t need to use SMIL. You just link your Web page to the clip
through a Ram file. For more information, see “What is a Ram file?” on page
538.

When should I use SMIL?

When you stream multiple clips, SMIL gives you the means to lay out the
presentation and time its clips. It also provides other features, such as letting
you create hyperlinks that display HTML pages, or that start new media
presentations. For a rundown of basic SMIL features, see “Understanding
SMIL” on page 189.

How do I write SMIL?

SMIL is a simple markup language that you can write with a word processor
or text editor. Some software tools create SMIL files automatically. Other
SMIL editing tools are also available. Visit the following Web page for more
information:

http://www.realnetworks.com/products/media_creation.html

What’s the difference between SMIL 1.0 and SMIL 2.0?

As the numbers suggest SMIL 2.0 is an enhancement to SMIL 1.0, which was
introduced in 1998. SMIL 2.0 greatly expands the capabilities of SMIL 1.0.
537

RealNetworks Production Guide
Because it is newer than SMIL 1.0, though, not every media player that
supports SMIL 1.0 can handle SMIL 2.0. RealOne Player or later can handle
both SMIL 2.0 and SMIL 1.0. RealPlayer G2, RealPlayer 7, and RealPlayer 8 can
read only SMIL 1.0 files, however.

Streaming Clips
Helix Server streams the clips created by RealProducer. You can stream clips
yourself with Helix Server, through a service provider that has Helix Server
available, or, in some cases, from a Web server.

Do I need to install Helix Server on my desktop computer?

Not necessarily. To run Helix Server, you need a computer connected to an
intranet or one that has a direct presence on the Internet. You cannot run
Helix Server if you use an Internet service provider (ISP) to connect to the
Internet. If you use an ISP, check whether they have Helix Server and whether
they can host your streaming presentations for you.

What operating systems does Helix Server run on?

Helix Server runs on Windows NT/2000 and many Unix platforms, including
Linux. For a list of available platforms, visit RealNetworks’ technical support
Web site at http://service.real.com.

Where do I get Helix Server?

Helix Server is available on the RealNetworks Web site at
http://www.realnetworks.com/products/media_delivery.html. Helix
Server Basic is free.

Can I stream clips from a Web server instead of Helix Server?

Sometimes. A Web server can deliver many types of clips, including RealAudio
and RealVideo. There are limits to Web server delivery, however. If you plan to
use a Web server for clip delivery, read “Limitations on Web Server Playback”
on page 527 first.

What is a Ram file?

A Ram file, also called a metafile, is a simple text file with the extension .ram. It
typically consists of just one line: the URL to a streaming presentation. Your
Web page does not link directly to your presentation. Instead, it links to the
538

APPENDIX A: Basic Questions
Ram file, which ensures that RealPlayer launches. RealPlayer then uses the
URL in the Ram file to request the presentation. “Launching RealPlayer with a
Ram File” on page 508 explains how to write a Ram file.

Tip: When you stream clips with Helix Server, you can
eliminate the Ram file by using the Ramgen utility. For more
information, see “Using Ramgen for Clips on Helix Server” on
page 522.

If I use SMIL, do I need a Ram file?

Yes. The SMIL file lists the URLs for clips. The Ram file supplies RealPlayer
with the URL to the SMIL file (or to your streaming clip, if you’re not using
SMIL). The Ram file is always necessary because its .ram extension launches
RealPlayer.

Why does Helix Server use RTSP rather than HTTP?

Web servers use HTTP to deliver Web pages and graphics. HTTP is designed to
download small files quickly and efficiently. It is not suited for streaming large
media clips, though. RTSP, which stands for “RealTime Streaming Protocol,”
is an industry-standard protocol that overcomes the deficiencies of HTTP for
streaming media. RTSP enables Helix Server and RealPlayer to stream long
clips and compensate for changing network conditions.

How do I stream clips with RTSP?

When a clip resides on Helix Server, make sure that the URL used to request it
starts with rtsp:// rather than http://. An RTSP URL must be in a file read by
RealPlayer, such as a Ram file or a SMIL file. It cannot be in an HTML page
hyperlink, because a Web browser does not know how to make an RTSP
request. For more on this, see “The Difference Between RTSP and HTTP” on
page 507.

Broadcasting
For full information about broadcasting media, see RealProducer 10 User’s
Guide and Helix Server Administration Guide.

What do I need for broadcasting over a network?

You need the following:
539

RealNetworks Production Guide
• An audio or video capture card on your computer, to digitize the input
from a microphone or camera.

• RealProducer on the same computer as the capture card, to encode the
output in a streaming format and send the stream to Helix Server.

• Helix Server, to broadcast the stream to one or more RealPlayers. Helix
Server typically does not run on the same computer as RealProducer.

Can I broadcast through my ISP?

Possibly. If you connect to the Internet through an ISP, you may be able to
broadcast streaming media, provided that your ISP has Helix Server available
and offers broadcasting services. To do this, you will need a fast Internet
connection to your ISP. You cannot broadcast through an ISP by running
Helix Server on your desktop computer.

Can I use SureStream in a broadcast?

Yes. Using SureStream is recommended because it ensures that users
connecting at different speeds will each receive the best possible stream. You
need to make sure, however, that the computer running RealProducer has
enough power to encode all the SureStream streams at the same time. Check
RealProducer’s manual or online help for system requirements, and perform a
trial run before streaming the actual broadcast.

Can I broadcast with a Web server instead of Helix Server?

No. You need Helix Server to broadcast streaming presentations. Web servers
are designed to serve HTML pages and graphics to different users at different
times. They are not designed to broadcast the same presentation to multiple
users simultaneously.

Does a broadcast have to be live?

No. “Broadcasting” means to send out a stream that more than one RealPlayer
user can view at the same time. The broadcast can be live, meaning that the
input originates from a microphone or video camera. Or it can be prerecorded,
meaning that it originates from a digitized clip prepared in advance. If it’s
prerecorded, you don’t need to use RealProducer during the broadcast. You
just put the clip on Helix Server and then set up Helix Server to broadcast the
clip as a simulated live event.
540

APPENDIX A: Basic Questions
Can I use SMIL with a broadcast?

Yes. You can use SMIL to include ads with the broadcast, or deliver static clips
alongside the broadcast. In the SMIL file, you simply treat the broadcast as a
static clip. The only difference is that you use a special URL created by the
Helix Server administrator that identifies the resource as a broadcast rather
than a clip.

How many people can I reach with a broadcast?

That depends entirely on your Helix Server and the network bandwidth it has
available. For large broadcasts, you can use a network of Helix Servers to reach
thousands of RealPlayers.

Can RealNetworks broadcast clips for me?

Yes. RealNetworks’ Managed Applicaton Services (MAS) offers a wide range of
services for hosting broadcasts. Learn more about MAS at:

http://www.realnetworks.com/products/mas/index.html

Getting Technical Support
RealNetworks offers a range of technical support features and
documentation.

How do I get technical support from RealNetworks?

RealNetworks Technical Support operates an extensive Web site at
http://service.real.com. The site includes answers to frequently asked
questions, a documentation library, and a searchable knowledge base.

Where can I f ind additional documentation?

RealNetworks Technical Support maintains a documentation library at
http://service.real.com/help/library/index.html. Most documents are
available as bundled HTML archives that you can download, uncompress, and
read with a Web browser. Many documents are also available in PDF format,
which is suitable for printing. To read PDF files, you need Adobe’s Acrobat
Reader, which is available from Adobe’s Web site:

http://www.adobe.com/products/acrobat/readstep.html
541

RealNetworks Production Guide
Where should I go for the latest information?

The RealNetworks Resources area is the main information site for content
authors and software developers working with RealNetworks products. You
can find it at the following Web address:

http://www.realnetworks.com/resources/index.html
542

A P P E N D I X
B

 Appendix B : PRODUCTION TASKS
Intended for beginning and intermediate users, this appendix
addresses specific production questions by referring you to the
appropriate section in this guide. If you have questions about a
specific tag or attribute, you may find later appendixes more
helpful.

Streaming Media Concepts
Chapter 2 introduces you to basic concepts and techniques for producing
streaming media presentations.

Streaming Media Concepts

Question Answer

How do RealPlayer’s three playback panes interact? page 30

What can I use RealPlayer’s related info pane to do? page 34

What sets the related info pane’s height and width? page 34

How do I use my streaming clips to open HTML pages? page 37

How do I use my HTML pages to control my clips? page 38

Which types of streaming clips can RealPlayer play? page 39

What does RealPlayer’s autoupdate feature do? page 43

How do I ensure backwards compatibility with earlier RealPlayers? page 44

Does RealPlayer cache my copyrighted clips? page 44

How do I reach audiences that have different connection speeds? page 45

How much data can I stream to a modem or a fast connection? page 46

What are buffering and preroll? page 45

How do I plan my presentation’s timeline? page 51
543

RealNetworks Production Guide
RealAudio Clips
Refer to Chapter 3 to learn about the RealAudio streaming format. Your user’s
guide or online help for RealProducer explains how to use that tool to encode
RealAudio clips.

RealVideo Clips
Chapter 4 explains RealVideo characteristics. See the user’s guide or online
help for RealProducer for instructions on encoding RealVideo clips.

RealAudio Clips

Question Answer

What is “lossy” compression? page 59

How much bandwidth does RealAudio use? page 60

What is a codec? page 60

When should I use SureStream RealAudio? page 49

What is the best sampling rate for an audio clip converted to RealAudio? page 61

Does RealAudio offer stereo encoding? page 63

How do I get the best quality sound? page 67

What media should I use to record audio that I plan to stream? page 67

What sampling rates can I use for audio input? page 69

How do I optimize my source audio? page 69

RealVideo Clips

Question Answer

How does a RealVideo clip encode the video’s soundtrack? page 74

How many frames per second does a RealVideo clip display? page 75

What frame rate should I use when I capture my video source? page 83

What width and height dimensions should I use for my RealVideo clip? page 82

What dimensions should I use when capturing my source video? page 82

Which RealVideo codec should I choose when encoding my video? page 77

How do I ensure that my video’s visual appearance is good? page 80

How do I keep a RealVideo clip from appearing distorted? page 76
544

APPENDIX B: Production Tasks
Flash Clips
If you produce Macromedia Flash animations, Chapter 5 explains how to
optimize your Flash Player clip for streaming.

RealText Markup
Chapter 6 explains the RealText markup for creating timed text. Appendix E
provides a quick reference for RealText tags and attributes.

Flash Clips

Question Answer

What versions of Flash can RealPlayer play? page 88

How much bandwidth does a Flash clip use when it streams? page 88

What Flash production techniques ensure high-quality streaming? page 90

How do I combine Flash with a RealAudio soundtrack? page 92

Can I use Flash timeline commands such as Play, Stop, and Go To? page 96

Can I use Flash commands to control RealPlayer? page 96

Can I use Load Movie to import a second clip into my main clip? page 98

Does a streaming Flash presentation support secure transactions? page 100

How do I prepare my Flash Player clip for streaming? page 101

RealText Markup

Question Answer

What languages does RealText support? page 108

How much bandwidth does RealText need? page 109

How do I make text scroll up, or move from right to left? page 111

Can I create a transparent RealText background? page 113

How do I specify how long a RealText clip lasts? page 114

How do I control when and where text appears in the RealText window? page 119

Can I erase all the text in the RealText window at some point? page 122

What fonts and font sizes can I use? page 124

Can I use HTML-type tags, such as and <p>? page 131

How do I center text in the window? page 133
 (Table Page 1 of 2)
545

RealNetworks Production Guide
RealPix Markup
See Chapter 7 for instructions on creating a RealPix slideshow from still
images. Appendix F summarizes RealPix tags and attributes.

Basic SMIL Questions
Chapter 8 explains the basics of using SMIL 2.0 in a RealPlayer presentation.

Can I link RealText to an HTML page or media clip? page 135

How do I use RealText hyperlinks to control playback in RealPlayer? page 137

RealText Markup (continued)

Question Answer

 (Table Page 2 of 2)

RealPix Markup

Question Answer

Should I use RealPix or SMIL 2.0 to create slideshows? page 146

What types of images can I use in a RealPix slideshow? page 148

Can I control how GIFs animate within a slideshow? page 173

Does RealPix support image transparency? page 149

How large can the file sizes for my slideshow images be? page 152

Where do I specify the RealPix display window dimensions? page 157

How do I control how much bandwidth RealPix uses? page 159

Can my slideshow use images on different servers? page 164

Can I deliver a RealPix slideshow with a Web server? page 164

How do I create effects such as fades and wipes? page 168

How do I zoom in on an image, or pan around a large image? page 174

Can I show only part of an image, or display two images at once? page 177

Basic SMIL 2.0 Issues

Question Answer

Why should I use SMIL? page 190

What versions of RealPlayer can play SMIL 2.0 presentations? page 191

Besides more features, are there differences between SMIL 1.0 and 2.0? page 204
 (Table Page 1 of 2)
546

APPENDIX B: Production Tasks
Clips and URLs
Chapter 9 is your primary resource for learning about clip source tags and
URLs. Chapter 21 contains information about servers and streaming
protocols.

How do I update my SMIL 1.0 presentation to SMIL 2.0? page 205

Where can I get the SMIL 2.0 specification? page 189

Will my presentation work with other SMIL-based players? page 194

How do I write a SMIL file? page 195

Is a closing slash always necessary with a SMIL tag? page 199

How do I add comments to a SMIL file? page 200

What values can I use for the ID in a SMIL tag? page 200

What is the rn: prefix I see in some SMIL attributes? page 201

How can I view the SMIL file for a streaming presentation? page 204

Basic SMIL 2.0 Issues (continued)

Question Answer

 (Table Page 2 of 2)

Clips and URLs

Question Answer

How do I introduce a clip, such as a video, into a presentation? page 207

Should a clip source tag have an ID? page 208

How do I set an image clip’s streaming speed? page 208

Can I treat a SMIL or Ram file like a clip and use it in another SMIL file? page 212

What URLs should I use in my SMIL file as I develop it? page 214

How do I move my clips from my desktop computer to a server? page 508

When I stream my clips, do they all need to have individual URLs? page 215

What is Real Time Streaming Protocol (RTSP)? page 507

How do I write an RTSP URL? page 216

How do I write an HTTP URL? page 216

Does RealPlayer cache files like a Web browser? page 217

What is the CHTTP protocol? page 217
547

RealNetworks Production Guide
Colors and Transparency
SMIL and RealNetworks’ SMIL customizations give you many ways to add
color to your presentation, as well as to modify the colors in existing clips to
create transparency or partial transparency.

Layouts
Chapter 12 explains how to lay out clips in the RealPlayer media playback
pane.

Colors and Transparency

Question Answer

What color values does SMIL accept? page 555

How do I add a background color to a region that plays a clip? page 292

How do I make the background color appear only when the clip plays? page 292

Can I make the region background color partially transparent? page 292

Can I change a region background color when a clip starts? page 293

Can I change the region background color while a clip plays? page 425

How do I turn an entire clip partially transparent? page 221

How can I make a clip’s opaque background transparent, or vice versa? page 221

Can I turn a range of colors in a clip transparent? page 222

Can I substitute a certain color for a clip’s transparent background? page 225

Can I make a clip become more (or less) transparent as it plays? page 436

Can I create a solid block of color other than a region background color? page 211

Layouts

Question Answer

Where in the SMIL file do I define the layout? page 277

Is a SMIL region like an HTML frame? page 270

How do I set my presentation’s overall size? page 278

Can I make a clip play in a separate window? page 279

How do a define the size of the region in which a clip plays? page 283

How do I specify which clips play in which regions? page 289

Can I play one clip in front of another? page 290
 (Table Page 1 of 2)
548

APPENDIX B: Production Tasks
Basic Timing and Groups
Refer to Chapter 13 for basic information about timing presentations.
Chapter 11 explains how to organize clips into groups.

How do I put a logo in front of my video? page 294

How do I center a clip in a region? page 297

How can I make my clip scale up or down to fit the region? page 303

Can I make the same clip display in more than one region? page 309

Layouts (continued)

Question Answer

 (Table Page 2 of 2)

Basic Timing and Groups

Question Answer

How do I make clips play one after another? page 249

How do I play several clips at the same time? page 251

Can I make an entire group of clips stop when one of the clips finishes? page 322

How do I let the viewer select which clip to play? page 261

How do I create a clip preview? page 318

Can I make a clip repeat? page 325

How do I specify how long an image clip displays? page 319

Can I make a clip play indefinitely? page 320

Can I use timing values with groups as well as clips? page 317

How do I make a clip freeze on screen after it stops playing? page 329

How do I make a clip display throughout the presentation? page 332

How do I delay when a clip starts playing? page 316
549

RealNetworks Production Guide
Advanced Timing
Chapter 14 explains the advanced timing features, which build on the basic
timing features described in Chapter 13.

Hyperlinks
Chapter 15 explains how to create hyperlinks in a SMIL presentation.

Advanced Timing

Question Answer

Can I start or stop an element when any one of multiple events occur? page 344

How do I start or stop a clip when a clip in another group starts or stops? page 344

Can I start or stop a clip when another clip repeats? page 346

How do I start or stop a clip when the viewer clicks an icon? page 348

How can I coordinate all clips with a broadcast? page 354

Can I prevent a clip from restarting? page 354

Can I create an effect similar to a Javascript rollover? page 348

How do I launch a clip on a keystroke? page 351

Hyperlinks

Question Answer

How do I create an image map over a clip? page 364

Can a SMIL link have an alt value? page 372

How do I open a link with a keystroke? page 370

How do I link my SMIL presentation to a Web page? page 373

Can I open a link in a browser frame? page 377

How do I open an HTML page in the related info pane? page 375

Does RealPlayer pause when a Web page opens? page 378

How do I open a link automatically? page 371

How do I link my SMIL file to another streaming presentation? page 379

Can I open a linked clip or SMIL presentation in a new window? page 380

Can RealText include hyperlinks, too? page 135
550

APPENDIX B: Production Tasks
Special Effects
Chapter 16 and Chapter 17 explain transition effects and SMIL animations,
respectively, the two features that allow you to create special effects with clips.

Advanced Streaming
Chapter 18 and Chapter 19 cover switching and prefetching, respectively, two
advanced features that allow you to stream different clips to different viewers,
and maintain greater control over bandwidth use.

Special Effects

Question Answer

How do I introduce a new clip with a transition effect? page 395

Can I control how long a transition effect takes to complete? page 409

How do I keep a clip visible long enough for a transition effect to occur? page 414

Can I stop a transition effect before it completes? page 410

How do I fade a clip to or from a solid color? page 416

How do I fade a video into the next video? page 417

Can I fade the volume of an audio clip up or down? page 425

How do I select what clip and property I want to animate? page 424

How do I make a clip grow or shrink? page 427

How do I move a clip around the screen? page 437

How do I animate colors? page 436

How do I make an animation flow smoothly? page 431

Advanced Streaming

Question Answer

How do I deliver different clips to different viewers? page 441

Do I always have to use a <switch> tag when I present multiple choices? page 443

What attributes can RealPlayer evaluate when choosing a clip? page 444

Can RealPlayer evaluate more than one attribute at a time? page 458

How do I deliver clips in different languages to different viewers? page 446

How do I stream clips at different bandwidths to different viewers? page 448

Can I add captions and audio descriptions to aid viewer accessibility? page 450
 (Table Page 1 of 2)
551

RealNetworks Production Guide
Web Page Embedding
See Chapter 20 for information on embedding your streaming presentation
directly in a Web page.

How do I deliver different clips to Windows, Macintosh, and Linux users? page 452

Can I use a <switch> tag to stream different sizes of videos? page 459

How do I stream clip data to RealPlayer before the clip plays? page 470

How much bandwidth can I use for prefetching clip data? page 471

How much clip data can I stream in advance of clip playback? page 473

Advanced Streaming (continued)

Question Answer

 (Table Page 2 of 2)

Web Page Embedding

Question Answer

Will an <EMBED> tag work with Microsoft Internet Explorer? page 483

How do I use both <OBJECT> and <EMBED> tags? page 490

What is RealPlayer’s ActiveX Class ID? page 489

What is a .rpm file? page 485

How do I set my presentation’s size in my Web page? page 488

How do I add RealPlayer controls to my Web page? page 490

How do I make all the controls work together? page 497

Can I center my clip in an HTML table? page 499

Can I make my presentation start as soon as the Web page loads? page 501

How do I set shuffle play? page 502

How do I lay out my SMIL presentation in my Web page? page 502

Can I use Javascript or VBScript to control my embedded presentation? page 484
552

APPENDIX B: Production Tasks
Presentation Delivery
Refer to Chapter 21 for instructions on delivering your presentation from
Helix Server or a Web server. That chapter also explains how to link your
presentation to your Web page.

Presentation Delivery

Question Answer

What is a Ram file? page 505

How do I write a Ram file? page 508

What URLs do I use in a Ram file? page 507

Why does Helix Server use RTSP? page 507

How do I link my Web page to my clips through the Ram file? page 512

Can I use the Ram file to open HTML pages in RealPlayer? page 514

How do I open my streaming clip at double-size or full-screen? page 517

How do I use Ramgen so that I don’t need a Ram file? page 522

What MIME types do I need to set on a Web server? page 526

Can a Web server perform all the functions of Helix Server? page 527

How can I advertise my presentation? page 530

Where do I get a download logo for RealPlayer? page 530
553

RealNetworks Production Guide
554

A P P E N D I X
C

 Appendix C : COLOR VALUES
Most markup, such as RealText and RealPix, can use color names
and hexadecimal values for color attributes. SMIL 2.0 supports the
color values defined in the Cascading Style Sheets 2 (CSS2)
specification, letting you use RGB values as well.

For More Information: The CSS2 color specification is located at
http://www.w3.org/TR/REC-CSS2/syndata.html#value-
def-color.

Using Color Names
The simplest, but most limited, way to specify a color is to use a predefined
color name, as shown in the following example:

backgroundColor=”blue”

RealText, RealPix, SMIL 2.0, CSS2, and HTML 4.0 all support the same 16
predefined color names, which are listed in the following table. Each color
name’s hexadecimal and RGB color value is included as reference, but you
specify only the name when defining the color.

white
#FFFFFF
rgb(255,255,255)

silver
#C0C0C0
rgb(192,192,192)

gray
#808080
rgb(128,128,128)

black
#000000
rgb(0,0,0)

yellow
#FFFF00
rgb(255,255,0)

fuchsia
#FF00FF
rgb(255,0,255)

red
#FF0000
rgb(255,0,0)

maroon
#800000
rgb(128,0,0)

lime
#00FF00
rgb(0,255,0)

olive
#808000
rgb(128,128,0)

green
#008000
rgb(0,128,0)

purple
#800080
rgb(128,0,128)

aqua
#00FFFF
rgb(0,255,255)

teal
#008080
rgb(0,128,128)

blue
#0000FF
rgb(0,0,255)

navy
#000080
rgb(0,0,128)
555

RealNetworks Production Guide
Defining Hexadecimal Color Values
For most color attributes, including those in RealText, RealPix, SMIL, and
embedded playback, you can specify any RGB color by using a hexadecimal
(base 16) value and a leading pound sign (#), as shown in the following
example:

backgroundColor=“#34F9A8”

Hexadecimal numbering uses the digits 0 through 9, along with the “digits” A
through F. Decimal 5 and hexadecimal 5 are the same value, for example, but
decimal 10 corresponds to hexadecimal A , decimal 15 corresponds to
hexadecimal F, and decimal 16 corresponds to hexadecimal 10.

Using Six-Digit Hexadecimal Values

Hexadecimal color values are typically six digits, in which the first pair of
digits defines an RGB red value, the second pair specifies a green value, and
the last pair specifies a blue value. Each hexadecimal pair can specify 256
colors (16 x 16), thereby replicating the RGB single-color values of 0 to 255.
Each hexadecimal red, green, or blue color value ranges from 00 (no color) to
FF (full color). Here are some examples:

• #000000 is black

• #FF0000 is bright red

• #FFFF00 is bright yellow

• #0000FF is bright blue

• #FFFFFF is white

Note: Letter case does not matter for hexadecimal digits.
Hence, #ACBD5F is equivalent to #acbd5f.

Defining Three-Digit Hexadecimal Values

For SMIL 2.0 color values, you can use a three-digit value, in which each digit
specifies a red, green, and blue RGB value, respectively, in place of any six-digit
hexadecimal value:

backgroundColor=“#3F8”

The three-digit value is converted to a six-digit value by duplicating each digit.
The preceding three-digit value is therefore equivalent to the following value:
556

APPENDIX C: Color Values
backgroundColor=“#33FF88”

Tip: Using the three-digit notation, you can quickly specify
white (#FFF) or black (#000).

Specifying RGB Color Values
Any SMIL 2.0 color attribute accepts a red/green/blue (RGB) value, as shown
in the following example:

backgroundColor=“rgb(128,56,10)”

Tip: Spaces between the color values are OK, so
rgb(128, 56, 10) works, too.

Using Standard RGB Color Values

In the RGB color scheme, there are 256 possible values for each of the red,
green, and blue components of a color pixel on a computer screen. In RGB
notation, each color value ranges from 0 (no color) to 255 (full color). A full
color value combines a red, a green, and a blue value. Here are a few examples
of RGB color values:

• rgb(0,0,0) is black

• rgb(255,0,0) is bright red

• rgb(255,255,0) is bright yellow

• rgb(0,0,255) is bright blue

• rgb(255,255,255) is white

Specifying RGB Percentages

SMIL also supports percentage values for RGB coordinates, in which 0%
corresponds to the value 0, and 100% corresponds to the value 255. Here is an
example that is equivalent to rgb(25,191,103):

backgroundColor=“rgb(10%,75%,40.5%)”

Tip: Decimal values are acceptable for percentages. In all cases,
RealPlayer converts the percentage values to their closest RGB
equivalents.
557

RealNetworks Production Guide
Tips for Defining Color Values
• Both the RGB and hexadecimal color schemes let you define the same

colors. In SMIL 2.0, use whichever method you prefer.

• Illustration programs typically define colors uisng the RGB scheme, while
the hexadecimal scheme is common to HTML markup programs. Many
newer programs support both schemes, though, and let you convert easily
between them. Web resources are also available to convert an RGB value to
hexadecimal, and vice versa.

• You can mix color names, RGB values, and hexadecimal values within a
SMIL file, using RGB for some attributes and hexadecimal values for
others, for example.

• Most color monitors can display all the colors that you can define
through SMIL. If a monitor cannot display the full range of colors, it
displays the nearest approximations.

• Keep in mind that some viewers may be color blind (especially between
greens and reds), or may not be able to discriminate between subtle color
differences. It’s a good idea always to use highly contrasting colors, such
as bright, light text on a dark background.
558

P A R T
X

Par t X: SYNTAX SUMMARIES
For the advanced user, these appendixes summarize the tags
and attributes for various markup used with RealPlayer.
Appendix D summarizes SMIL 2.0 tags. Appendix E and
Appendix F cover RealText and RealPix, respectively. Appendix G
lists Ram f ile parameters, while Appendix H explains common
file extensions. Appendix I lists the RealPlayer language codes
that you can use in SMIL.

A P P E N D I X
D

 Appendix D : SMIL TAG SUMMARY
Intended for advanced users, this appendix provides a reference to SMIL 2.0 tags
and attributes. Be sure to familiarize yourself with “Conventions Used in this
Guide” on page 12, which explains the typographical conventions used in this
appendix.

<smil>...</smil>
The <smil> and </smil> tags must start and end the SMIL markup. The SMIL 2.0 namespace
declaration is required. You must declare the RealNetworks extension namespace if your SMIL
file includes a customized attribute that uses the rn: prefix.

Example

<smil xmlns=“http://www.w3.org/2001/SMIL20/Language”
xmlns:rn=“http://features.real.com/2001/SMIL20/Extensions”>
 ...all additional SMIL 2.0 markup...
</smil>

Header Tags
The SMIL file header, created between <head> and </head> tags, contains tags that let you
define the presentation’s layout, information, transitions, and other features. For basic
information about defining the SMIL file header, see “Header and Body Sections” on page 196.

SMIL 2.0 <smil> Tag Namespaces

Namespace Features Defined Reference

xmlns=“http://www.w3.org/2001/SMIL20/Language” SMIL 2 Language Profile page 196

xmlns:rn=“http://features.real.com/2001/SMIL20/Extensions” RealNetworks extensions page 202

xmlns:cv=“http://features.real.com/systemComponent” version checking page 456
561

RealNetworks Production Guide
<meta/>

The header region’s <meta/> tags provide presentation information. A <meta/> tag can also set
a base URL for source clips in the SMIL file. The content and name attributes are required for
each <meta/> tag. For basic information about the <meta/> tag, see “Defining Information for
the SMIL Presentation” on page 242.

Examples

<meta name=”author” content=”Jane Morales”/>
<meta name=”title” content=”Multimedia My Way”/>
<meta name=”copyright” content=”(c)2001 Jane Morales”/>
<meta name=”base” content=”rtsp://helixserver.example.com/”/>

<layout>...</layout>

The <layout> and </layout> tags within the SMIL header contain other tags that define the
layout of visual clips. Within the layout section, you define a root-layout area and separate
regions for clips. You can also define secondary media windows.

<root-layout/>

Within the layout section, a single <root-layout/> tag sets the overall size of the main media
playback pane. Clips play in regions created within the root-layout area. They do not play in
the root-layout area directly. The height and width attributes are required for the <root-layout/>

SMIL 2.0 <meta/> Tag Attributes

Attribute Value Function Reference

content text|URL Provides the content for the name attribute. page 242

name abstract Gives the presentation abstract. page 242

author Lists the presentation author’s name. page 242

base Sets the base URL for the source clips. page 215

copyright Supplies the presentation copyright. page 242

title Gives the presentation title. page 242
562

APPENDIX D: SMIL Tag Summary
tag. For basic information about the <root-layout/> tag, see “Defining the Main Media
Playback Pane” on page 278.

Example

<layout>
 <root-layout backgroundColor=”maroon” width=”320” height=”240”/>
 <region ...playback region defined.../>
 <region ...playback region defined.../>
</layout>

<topLayout>...</topLayout>

Following <root-layout/>, <topLayout>...</topLayout> tags can define the overall size of a
secondary media window that is detached from the main media playback pane. You assign
clips to play in regions within this window. You cannot assign clips directly to a <topLayout>
window. The height and width attributes are required for the <topLayout> tag. For basic
information about the <topLayout> tag, see “Creating Secondary Media Playback Windows” on
page 279.

SMIL 2.0 <root-layout/> Tag Attributes

Attribute Value Default Function Reference

backgroundColor color_value black Sets the window background color. page 292

rn:contextWindow auto|openAtStart auto Sets when related info pane opens. page 376

height pixels 0 Sets the main window height. page 278

rn:resizeBehavior percentOnly|zoom zoom Controls whether regions resize. page 281

width pixels 0 Sets the main window width. page 278

SMIL 2.0 <topLayout/> Tag Attributes

Attribute Value Default Function Reference

backgroundColor color_value black Sets the background color. page 292

close onRequest|
whenNotActive

onRequest Determines when the window
closes.

page 279

height pixels (none) Sets the window height. page 279

open onStart|whenActive onStart Controls when the window
opens.

page 279

rn:resizeBehavior percentOnly|zoom zoom Controls whether regions resize. page 281

width pixels (none) Sets the window width. page 279
563

RealNetworks Production Guide
Example

<layout>
 <root-layout.../>
 ...main media playback pane regions defined...
 <topLayout width=”180” height=”120” open=”whenActive” close=”whenNotActive”>
 ...secondary media playback window regions defined...
 </topLayout>
</layout>

<region/>

Following <root-layout/>, or between <topLayout> and </topLayout>, <region/> tags define the
size, placement (relative to the pane or window), and properties of each region used to play
clips. A unique id attribute is required for each <region/> tag. For basic information about the
<region/> tag, see “Defining Playback Regions” on page 281.

SMIL 2.0 <region/> Tag Attributes

Attribute Value Default Function Reference

backgroundColor inherit|transparent|
color_value

transparent Sets the region background color. page 292

bottom auto|pixels|
percentage

auto Sets the region’s offset from the
bottom of the window.

page 283

fit fill|hidden|meet|
scroll|slice

hidden Controls how clips fit the region. page 303

height auto|pixels|
percentage

auto Sets the region’s height. page 283

id name (none) Creates an ID for assigning clips. page 282

left auto|pixels|
percentage

auto Sets the region’s offset from the
window’s left side.

page 283

rn:opacity percentage 100% Reduces background opacity. page 292

regionName name (none) Provides a name for certain features. page 282

right auto|pixels|
percentage

auto Sets the region’s offset from the
window’s right side.

page 283

showBackground always|whenActive always Determines when the background
color appears.

page 292

soundLevel percentage 100% Cuts or boosts a clip’s audio volume. page 294

top auto|pixels|
percentage

auto Sets the region’s offset from the top
of the window.

page 283

 (Table Page 1 of 2)
564

APPENDIX D: SMIL Tag Summary
Example

The following example defines both a region and a subregion:

<layout>
 <root-layout .../>
 <region id=”video_region” top=”5” left=”5” width=”240” height=”180” z-index=”3”
 backgroundColor=”blue” showBackground=“whenActive”>
 <region id=”logo_region” bottom=”10%” right=”15%” fit=”fill”/>
 </region>
</layout>

<regPoint/>

Between the <layout> and </layout> tags, <regPoint/> tags define registration points that
determine where and how clips are placed in regions. The id attribute is required for the
<regPoint/> tag. For basic information about the <regPoint/> tag, see “Positioning Clips in
Regions” on page 297.

width auto|pixels|
percentage

auto Defines the region’s width. page 283

z-index number 0 Sets the stacking order when the
region overlaps another region.

page 290

SMIL 2.0 <regPoint/> Tag Attributes

Attribute Value Default Function Reference

bottom auto|pixels|
percentage

auto Sets the point’s offset from the region’s
bottom border.

page 300

id name (none) Creates an ID for assigning the point to clips. page 297

left auto|pixels|
percentage

auto Sets the point’s offset from the region’s left
side.

page 300

right auto|pixels|
percentage

auto Sets the point’s offset from the region’s right
side.

page 300

top auto|pixels|
percentage

auto Sets the point’s offset from the region’s top
border.

page 300

regAlign topLeft|topMid|
topRight|midLeft|
center|midRight|
bottomLeft|bottomMid|
bottomRight

topLeft Specifies how clips align to the point. page 298

SMIL 2.0 <region/> Tag Attributes (continued)

Attribute Value Default Function Reference

 (Table Page 2 of 2)
565

RealNetworks Production Guide
Example

<layout>
 ...windows and regions defined...
 <regPoint id=”middle” left=”50%” top=”50%” regAlign=”center”/>
</layout>

<transition/>

Following the layout section, <transition/> tags define transition effects that occur when clips
start or stop. The id and type attributes are required for the <transition/> tag. For basic
information about the <transition/> tag, see “Defining Transition Types” on page 395.

Example

<layout>
 ...windows, regions, and registration points defined...
</layout>
<transition id="sixteenBoxes" type="fourBoxWipe" subtype="cornersOut" horzRepeat="2"
 vertRepeat="2" dur="2s"/>

SMIL 2.0 <transition/> Tag Attributes

Attribute Value Default Function Reference

borderColor blend|color_value black Specifies a border color or a blended border. page 412

borderWidth pixels 0 Specifies a border width. page 412

fadeColor color_value black Sets a color for fades. page 412

direction forward|reverse forward Specifies the transition direction. page 409

dur time_value 1s Defines the length of the transition effect. page 409

endProgress 0.0-1.0 1.0 Ends the effect before it completes fully. page 410

horzRepeat integer 1 Sets a number of horizontal repetitions. page 411

id name (none) Creates an ID for assigning the effect. page 395

startProgress 0.0-1.0 0.0 Starts the effect at a midway point. page 410

subtype subtype_name (varies) Defines an optional subtype for each type. page 395

type type_name (none) Specifies the main transition type. page 395

vertRepeat integer 1 Sets a number of vertical repetitions. page 411
566

APPENDIX D: SMIL Tag Summary
Clip Source Tags
You add clips to a presentation with one of the following source tags:

Except for <brush/>, the choice of tag does not affect playback. All clip source tags can use
<ref/>, for example. The src attribute is required for all clip source tags except <brush/>. For
basic information about the clip souce tags, see “Creating Clip Source Tags” on page 207.

Streaming and Information

The following clip source tag attributes set basic streaming characteristics, and supply
information about the clip.

<animation/> animation clip such as Macromedia Flash

<audio/> audio clip such as RealAudio

<brush/> color block used in place of a media clip

 image file in GIF, JPEG, or PNG format

<ref/> any type of clip not covered by the other tags

<text/> static text file

<textstream/> streaming text clip such as RealText

<video/> video clip such as RealVideo

SMIL 2.0 Streaming and Informational Clip Tag Attributes

Attribute Value Default Function Reference

abstract text (none) Provides a clip abstract. page 240

alt text (none) Provides alternate text. page 244

author text (none) Lists the clip’s author. page 240

bitrate bits_per_second 12288 Sets a static clip’s streaming speed. Use in a
<param/> tag.

page 208

copyright text (none) Lists the copyright for the clip. page 240

rn:delivery client|server client Specifies server-side or client-side action. Use
in a <param/> tag.

page 208

id name (none) Names clip for reference by other elements,
such as animations.

page 208

longdesc text (none) Provides a long description. page 244

readIndex integer 0 Determines how assistive devices read clip
information.

page 245

reliable false|true false Ensures reliable transmission. page 210
 (Table Page 1 of 2)
567

RealNetworks Production Guide
Examples

<audio id=”audio1” src=”rtsp://helixserver.example.com/media/music.rm”/>

<video src=”rtsp://helixserver.example.com/media/clip1.rm" title="Bob Expounds His View"
 author=”RealNetworks Media Services” copyright=”(c)2002 RealNetworks, Inc.”/>

 <param name=”bitrate” value=”5000” rn:delivery=”server”/>

Timing and Layout

The following table lists attributes that control clip timing and layout.

src URL (none) Provides a full or relative URL for the clip. Not
used with <brush/>.

page 207

title text (none) Provides a title for the clip. page 240

SMIL 2.0 Timing and Layout Clip Tag Attributes

Attribute Value Default Function Reference

begin time_value 0s Delays normal playback time. See also
“Advanced Timing Attributes” below.

page 316

clipBegin time_value 0s Specifies the clip’s internal timing
mark where playback begins.

page 318

clipEnd time_value (none) Specifies the clip’s internal timing
mark where playback ends.

page 318

dur time_value|media|
indefinite

media Sets the total time the clip or one of
its repeating cycles plays.

page 319

end time_value (none) Sets the end time for the clip. See also
“Advanced Timing Attributes” below.

page 316

erase never|whenDone whenDone Specifies if the clip remains when its
fill period expires.

page 332

fill auto|default|freeze|
hold|remove|transition

auto|
default

Determines the fill state when the
clip is no longer active.

page 329

fillDefault auto|freeze|hold|
inherit|remove|
transition

inherit Sets a default fill for contained
elements, such as animations.

page 336

mediaRepeat strip|preserve preserve Strips out native repetitions. page 327
 (Table Page 1 of 2)

SMIL 2.0 Streaming and Informational Clip Tag Attributes (continued)

Attribute Value Default Function Reference

 (Table Page 2 of 2)
568

APPENDIX D: SMIL Tag Summary
Examples

<video id=”video1” src=”rtsp://helixserver.example.com/media/video2.rm” region=”video_region”
 begin=”40s” clipBegin=”5100ms” clipEnd=”4.5min” fill=”freeze”/>

<audio id=”audio1” src=”rtsp://helixserver.example.com/media/music.rm”
 dur=”10.5s” repeatCount=”5”/>

Advanced Timing Attributes

The following table summarizes the advanced event values you can use with the begin and end
timing attributes. Most event values require an ID value that identifies the element trigger.

regAlign topLeft|topMid|
topRight|midLeft|
center|midRight|
bottomLeft|bottomMid|
bottomRight

topLeft Specifies which part of the clip aligns
to the registration point.

page 298

region region_ID (none) Assigns the clip to a region. page 289

regPoint regPont_ID|
topLeft|topMid|
topRight|midLeft|
center|midRight|
bottomLeft|bottomMid|
bottomRight

(none) Assigns the clip to a predefined
registration point, or specifies a point
on the region.

page 289

repeatCount integer|indefinite|
fractional_value

0 Repeats the clip the specified number
of times, or indefinitely.

page 325

repeatDur time_value|indefinite 0s Repeats the clip the specified amount
of time.

page 325

restart always|default|never|
whenNotActive

always Determines if the clip can replay. page 354

syncBehavior canSlip|default|
independent|locked

default Sets how the clip synchronizes to its
group.

page 254

transIn <transition/> ID (none) Assigns a starting transition effect. page 413

transOut <transition/> ID (none) Assigns an ending transition effect. page 413

Advanced Timing Values for begin and end Attributes

Value Event Type Function Reference

accesskey(key) interactive Start or stop an element on a keypress. page 351

ID.activateEvent interactive Start or stop an element on a mouse click. page 348
 (Table Page 1 of 2)

SMIL 2.0 Timing and Layout Clip Tag Attributes (continued)

Attribute Value Default Function Reference

 (Table Page 2 of 2)
569

RealNetworks Production Guide
Examples

...
<video src=”rtsp://helixserver.example.com/video1.rm” begin=”button.activateEvent”.../>

 <set targetElement="image_region" attributeName="backgroundColor" to="red"
 begin="image1.inBoundsEvent" end="image1.outOfBoundsEvent"/>

Color and Transparency

The following attributes affect colors and the use of transparency. Attributes that use a rn:
prefix require that you declare the RealNetworks extensions namespace.

ID.begin scheduled Start or stop a clip when another element begins. page 344

ID.beginEvent interactive Start or stop a clip when another element begins. page 344

ID.end scheduled Start or stop a clip when another element ends. page 344

ID.endEvent interactive Start or stop a clip when another element ends. page 344

ID.focusInEvent interactive Start or stop an element through keyboard focus. page 351

ID.focusOutEvent interactive Start or stop an element through keyboard focus. page 351

ID.inBoundsEvent interactive Start or stop an element on cursor movement. page 348

ID.marker(name) scheduled Start or stop an element when a marker is reached. page 354

ID.outOfBoundsEvent interactive Start or stop an element on cursor movement. page 348

ID.repeat(integer) scheduled Start or stop an element on a clip loop cycle. page 346

ID.repeatEvent interactive Start or stop an element on a clip repetition. page 346

ID.topLayoutCloseEvent interactive
or scheduled

Start or stop an element when a secondary media
playback window closes.

page 353

ID.topLayoutOpenEvent interactive
or scheduled

Start or stop an element when a secondary media
playback window opens.

page 353

ID.wallclock(time) scheduled Start or stop an element with an external clock. page 354

SMIL 2.0 Clip Color and Transparency Tag Attributes

Attribute Value Default Function Reference

rn:backgroundOpacity percentage 100% Adjusts background opacity. page 221

bgcolor color_value (none) Substitutes color for transparency.
Use in a <param/> tag.

page 225

 (Table Page 1 of 2)

Advanced Timing Values for begin and end Attributes (continued)

Value Event Type Function Reference

 (Table Page 2 of 2)
570

APPENDIX D: SMIL Tag Summary
Examples

<img src=”http://www.example.com/picture.jpg” rn:chromaKey=”#808080”
 rn:chromaKeyOpacity=”50%”/>

Text Characteristics

With plain text files or inline text clips, which are described in “Adding Text to a SMIL
Presentation” on page 225, you can use the following parameters to specify the text font, size,
color, alignment and so on. Each parameter must appear in a separate <param/> tag.

rn:chromaKey color_value (none) Turns selected color transparent. page 222

rn:chromaKeyOpacity percentage 0% Adds opacity to rn:chromaKey. page 222

rn:chromaKeyTolerance #nnnnnn (none) Widens range of rn:chromaKey. page 222

color color_value black Sets color in a <brush/> tag. page 211

rn:mediaOpacity percentage 100% Adjusts overall transparency. page 221

Text Parameters for Plain Text and Inline Text

Name Values Default Function Reference

backgroundColor name|#RRGGBB white Sets the background color. page 232

charset character_set computer
default

Defines the character set. page 230

expandTabs true|false true Replaces tabs with spaces. page 234

fontBackground
Color

name|#RRGGBB white Sets the color behind the text. page 232

fontColor name|#RRGGBB black Selects the font color. page 232

fontFace font_name computer
default

Determines the font used. page 232

fontPtSize point_size (none) Sets a specific point size. page 233

fontSize -2|-1|+0|+1|+2|+3|+4
or
1|2|3|4|5|6|7

+0 Sets the font relative or absolute
size.

page 233

fontStyle italic|normal normal Italicizes text. page 233

fontWeight 100-900|bold|normal normal Turns text bold. page 233

hAlign left|center|right left Aligns text horizontally. page 234
 (Table Page 1 of 2)

SMIL 2.0 Clip Color and Transparency Tag Attributes (continued)

Attribute Value Default Function Reference

 (Table Page 2 of 2)
571

RealNetworks Production Guide
Example

<text src="data:,This%20is%20inline%20text." region="text_region" dur="8s">
 <param name="charset" value="iso-8859-1"/>
 <param name="fontFace" value="System"/>
 <param name="fontColor" value="yellow"/>
 <param name="backgroundColor" value="blue"/>
</text>

<prefetch/>

Chapter 19 describes the <prefetch/> tag, which lets you download clip data before the clip
plays. The <prefetch/> tag can use many SMIL timing attributes to set limits on prefetching. It
also has its own attributes that control the data download. The id attribute is required.

vAlign top|center|bottom top Aligns text vertically. page 234

wordWrap true|false true Turns off word wrapping. page 234

SMIL 2.0 <prefetch> Tag Attributes

Attribute Value Default Function Reference

bandwidth bits_per_second|
percentage

100% Sets the bandwidth used to get data. page 471

begin time_value 0s Delays the prefetch start. page 316

clipBegin time_value 0s Specifies the clip’s internal timing
mark where prefetching begins.

page 318

clipEnd time_value (none) Specifies the clip’s internal timing
mark where prefetching ends.

page 318

dur time_value|media|
indefinite

media Sets the duration for prefetching. page 319

end time_value (none) Sets the end time for prefetching. page 316

id name (none) Names prefetching element for
reference by other SMIL elements.

page 200

mediaSize bytes|percentage 100% Sets how much data to fetch based
on clip size. Overrides mediaTime.

page 473

mediaTime time_value|
percentage

100% Specifies the amount of data to fetch
based on the clip’s duration.

page 474

restart always|default|never|
whenNotActive

always Determines if prefetching can restart. page 354

 (Table Page 1 of 2)

Text Parameters for Plain Text and Inline Text (continued)

Name Values Default Function Reference

 (Table Page 2 of 2)
572

APPENDIX D: SMIL Tag Summary
Group Tags
Chapter 11 explains the group tags that you can use to create the superstructure for your
presentation’s timeline.

<seq>...</seq>

The <seq> and </seq> tags play the enclosed clips in sequence. No attributes are required for a
<seq> tag, which is described in “Playing Clips in Sequence” on page 249.

src URL (none) Gives the URL to the prefetched clip. page 207

syncBehavior canSlip|default|
independent|locked

default Sets how <prefetch/> synchronizes
to its group.

page 254

SMIL 2.0 <seq> Tag Attributes

Attribute Value Default Function Reference

begin time_value 0s Delays the normal group playback. page 317

dur time_value|media|
indefinite

media Sets the total time the group plays. page 319

end time_value (none) Sets an end time for the group. page 317

fill freeze|hold|remove remove Determines the fill state when the
group is no longer active.

page 334

fillDefault auto|freeze|hold|
inherit|remove|
transition

inherit Sets a default fill for contained clips. page 336

id name (none) Names the group for reference by
other elements.

page 200

repeatCount integer|indefinite|
fractional_value

0 Repeats the group the specified
number of times, or indefinitely.

page 325

repeatDur time_value|
indefinite

0s Repeats the group the specified
amount of time.

page 325

restart always|default|never|
whenNotActive

always Determines if the group can restart. page 354

restartDefault always|inherit|never|
whenNotActive

inherit Specifies a restart value the group
passes to its elements.

page 355

 (Table Page 1 of 2)

SMIL 2.0 <prefetch> Tag Attributes (continued)

Attribute Value Default Function Reference

 (Table Page 2 of 2)
573

RealNetworks Production Guide
Example

<seq repeatDur=”30min”>
 <audio src=”rtsp://helixserver.example.com/one.rm”/>
 <audio src=”rtsp://helixserver.example.com/two.rm”/>
</seq>

<par>...</par>

The <par> and </par> tags make enclosed clips play at the same time. No attributes are required
for a <par> tag, which is described in “Playing Clips in Parallel” on page 251.

syncBehavior canSlip|default|
independent|locked

default Determines how the group
synchronizes to its containing group.

page 254

syncBehavior
Default

canSlip|independent|
inherit|locked

inherit Sets the default syncBehavior value
for the elements the group contains.

page 257

syncTolerance time_value|
inherit

inherit Creates a tolerance value for locked
elements in the group.

page 259

syncTolerance
Default

time_value (none) Sets a tolerance value inherited by
other groups the group contains.

page 259

SMIL 2.0 <par> Tag Attributes

Attribute Value Default Function Reference

abstract text (none) Provides an abstract for the group. page 240

author text (none) Lists an author for the group. page 240

begin time_value 0s Delays the normal playback time. page 317

copyright text (none) Lists the copyright for the group. page 240

dur time_value|media|
indefinite

media Sets the total time the group plays. page 319

end time_value (none) Sets an end time for the group. page 317

endsync all|first|ID|last|
media

last Determines when the group ends. page 322

fill freeze|hold|remove remove Determines the fill state when the
group is no longer active.

page 334

fillDefault auto|freeze|hold|
inherit|remove|
transition

inherit Sets a default fill for contained clips. page 336

 (Table Page 1 of 2)

SMIL 2.0 <seq> Tag Attributes (continued)

Attribute Value Default Function Reference

 (Table Page 2 of 2)
574

APPENDIX D: SMIL Tag Summary
Example

<par endsync=“text” repeatCount=”2” begin=”4s”>
 <video src=”rtsp://helixserver.example.com/newsong.rm” region=”video_region”/>
 <textstream id=”text” src=”rtsp://helixserver.example.com/newsong.rt” region=”text_region”/>
</par>

<excl>...</excl>

The <excl> and </excl> tags create an exclusive group in which only one clip can play at a time.
A duration is required for the <excl> tag if all elements in the group use interactive timing. For
basic information on this tag, see “Creating an Exclusive Group” on page 261.

id name (none) Names the group for reference by
other elements.

page 200

repeatCount integer|indefinite|
fractional_value

0 Repeats the group the specified
number of times, or indefinitely.

page 325

repeatDur time_value|
indefinite

0s Repeats the group the specified
amount of time.

page 325

restart always|default|never|
whenNotActive

always Determines if the group can restart. page 354

restartDefault always|inherit|never|
whenNotActive

inherit Specifies a restart value the group
passes to its elements.

page 355

syncBehavior canSlip|default|
independent|locked

default Determines how the group
synchronizes to its containing group.

page 254

syncBehavior
Default

canSlip|independent|
inherit|locked

inherit Sets the default syncBehavior value for
the elements the group contains.

page 257

syncTolerance time_value|
inherit

inherit Creates a tolerance value for locked
elements in the group.

page 259

syncTolerance
Default

time_value (none) Sets a tolerance value inherited by
other groups the group contains.

page 259

title text (none) Lists a title for the group. page 240

SMIL 2.0 <excl> Tag Attributes

Attribute Value Default Function Reference

begin time_value 0s Delays the normal playback time. page 317

dur time_value|media|
indefinite

media Sets the total time the group plays. page 319

 (Table Page 1 of 2)

SMIL 2.0 <par> Tag Attributes (continued)

Attribute Value Default Function Reference

 (Table Page 2 of 2)
575

RealNetworks Production Guide
Example

<excl dur=”indefinite”>
 <video src=”video1.rm” begin=”button1.activateEvent” region=”video_region”/>
 <video src=”video2.rm” begin=”button2.activateEvent” region=”video_region”/>
 <video src=”video3.rm” begin=”button3.activateEvent” region=”video_region”/>
</excl>

end time_value (none) Sets an end time for the group. page 317

endsync all|first|ID|last|
media

last Determines when the group ends. page 322

fill freeze|hold|remove remove Determines the fill state when the
group is no longer active.

page 334

fillDefault auto|freeze|hold|
inherit|remove|
transition

inherit Sets a default fill for contained clips. page 336

id name (none) Names the group for reference by
other elements.

page 200

repeatCount integer|indefinite|
fractional_value

0 Repeats the group the specified
number of times, or indefinitely.

page 325

repeatDur time_value|
indefinite

0s Repeats the group the specified
amount of time.

page 325

restart always|default|never|
whenNotActive

always Determines if the group can restart. page 354

restartDefault always|inherit|never|
whenNotActive

inherit Specifies a restart value the group
passes to its elements.

page 355

syncBehavior canSlip|default|
independent|locked

default Determines how the group
synchronizes to its containing group.

page 254

syncBehavior
Default

canSlip|independent|
inherit|locked

inherit Sets the default syncBehavior value for
the elements the group contains.

page 257

syncTolerance time_value|
inherit

inherit Creates a tolerance value for locked
elements in the group.

page 259

syncTolerance
Default

time_value (none) Sets a tolerance value inherited by
other groups the group contains.

page 259

SMIL 2.0 <excl> Tag Attributes (continued)

Attribute Value Default Function Reference

 (Table Page 2 of 2)
576

APPENDIX D: SMIL Tag Summary
<priorityClass>...</priorityClass>

These tags create a priority class within an exclusive group. Each priority class, which is
described in “Modifying Clip Interruption Behavior” on page 263, defines the interruption
behavior of clips within the exclusive group. No attributes are required for a <priorityClass> tag.

Example

<excl>
 <priorityClass peers=“pause”>
 <video src=”video1.rm” begin=”button1.activateEvent” region=”video_region”/>
 <video src=”video2.rm” begin=”button2.activateEvent” region=”video_region”/>
 <video src=”video3.rm” begin=”button3.activateEvent” region=”video_region”/>
 </priorityClass>
</excl>

<switch>...</switch>

The <switch> and </switch> tags, described in “Understanding Switching” on page 441, specify
elements that RealPlayer chooses between based on certain criteria. No attributes are required
for the <switch> tag.

Test Attributes

Elements within a <switch> group must include a test attribute, such as systemBitrate or
systemLanguage . You can add a test attribute to any clip source tag, as well as <a/>, <area/>,

SMIL 2.0 <priorityClass> Tag Attributes

Attribute Value Default Function Reference

higher pause|stop pause Sets class behavior on interruption by clips with
higher priority.

page 265

id name (none) Names the group for reference by other elements. page 200

lower defer|never defer Specifies how interrupting clips with lower priority
behave.

page 266

pauseDisplay disable|hide|
show

show Sets a clip’s appearance if the clip is paused. page 266

peers defer|never|
pause|stop

stop Controls how clips in the same class interrupt each
other.

page 264

SMIL 2.0 <switch> Tag Attributes

Attribute Value Function Reference

id name Names the group as a link target for other SMIL files. page 200
577

RealNetworks Production Guide
<layout>, <region/>, <prefetch/>, <excl>, <par>, <seq>, <animate/>, <animateColor/>,
<animateMotion/>, and <set/> tags.

Examples

<switch>
 <audio src=”rtsp://helixserver.example.com/seattle_french.rm” systemLanguage=”fr”/>
 <audio src=”rtsp://helixserver.example.com/seattle_german.rm” systemLanguage=”de”/>
 <audio src=”rtsp://helixserver.example.com/seattle_english.rm”/>
</switch>

<switch>
 <ref src=”rtsp://helixserver.example.com/slides1.rp” systemBitrate=”80000”/>
 <ref src=”rtsp://helixserver.example.com/slides2.rp” systemBitrate=”20000”/>
</switch>

SMIL 2.0 Test Attributes for Switching

Attribute Value Function Reference

systemAudioDesc on|off Tests for an audio descriptions preference. page 450

systemBitrate bits_per_second Tests for the bit rate. page 448

systemCaptions on|off Tests for a captions preference. page 450

systemComponent component Checks for a component or a version number. page 455

systemLanguage language_code Tests for a language preference. page 446

systemOperatingSystem OS_name Tests for the operating system. page 452

systemOverdubOrSubtitle overdub|subtitle Tests for an overdub or subtitle preference. page 447

systemRequired prefix Verifies namespace support. page 455

systemScreenDepth 1|4|8|24|32 Tests for the monitor color depth. page 454

systemScreenSize pixel_heightX
pixel_width

Tests for the monitor size. page 453
578

APPENDIX D: SMIL Tag Summary
Hyperlink Tags

<a>...

The <a>... tags turn the enclosed clip source tag into a hyperlink. For basic information
about these tags, see “Creating a Simple Link” on page 362. The href attribute is required for
the <a> tag.

Example

 <video src=”video.rm” region=”video_region”/>

<area/>

An <area/> tag can define a hot spot hyperlink that can be temporal as well as spatial. It fits
within a clip source tag pair:

SMIL 2.0 <a> Tag Attributes

Attribute Value Default Function Reference

accesskey key (none) Sets a keystroke that opens the link. page 370

actuate onLoad|onRequest onRequest Determines whether or not the link
requires user activation.

page 371

alt text (none) Supplies alternate text for the link. page 372

destinationLevel percentage 100% Specifies the audio level of the target. page 384

destination
Playstate

pause|play play Sets the play state of the target when
the link opens.

page 380

external false|true false Sends the link to the browser if true . page 374

href URL (none) Gives the link URL. page 369

show new|replace replace Sets the current or a new media
playback window as the target.

page 380

sourceLevel percentage 100% Sets the audio level of the source. page 384

sourcePlaystate pause|play|stop pause|play Sets the play state of the source. page 380

tabindex integer 0 Sets the tabbing order for links. page 372

target name (current
window)

Identifies a window or a SMIL region. page 377
page 381
579

RealNetworks Production Guide
<video ...>
 <area .../>
</video>

The following table lists possible <area/> tag attributes. No attributes are required for this tag,
but href is typically included. For basic information about the <area/> tag, see “Using the
<area/> Tag” on page 362.

SMIL 2.0 <area/> Tag Attributes

Attribute Value Default Function Reference

accesskey key (none) Sets a keystroke that opens the link. page 370

actuate onLoad|onRequest onRequest Determines whether or not the link
requires user activation.

page 371

alt text (none) Supplies alternate text for the link. page 372

begin time_value 0s Sets when the link becomes active. page 363

coords pixels|percentage (none) Defines the hot spot size and location. page 362

destinationLevel percentage 100% Specifies the audio level of the target. page 384

destination
Playstate

pause|play play Sets the play state of the target when
the link opens.

page 380

dur time_value (none) Sets the total time the link is active. page 319

end time_value (none) Sets when the link deactivates. page 363

external false|true false Sends the link to the browser if true. page 374

height pixels media
height

Sets related info pane height in
<rn:param>.

page 376

href URL (none) Gives the link URL. page 369

id name (none) Defines the element ID. page 200

nohref (none) (none) Indicates that the link has no URL. page 370

rn:sendTo _osdefaultbrowser|
_rpbrowser|
_rpcontextwin

(none) Specifies a browser window that
opens the HTML page.

page 374
page 375

shape rect|circle|poly rect Sets the hotspot shape. page 364

show new|replace replace Sets the current or a new media
playback window as the target.

page 380

sourceLevel percentage 100% Sets the audio level of the source. page 384

sourcePlaystate pause|play|stop pause|play Sets the play state of the source. page 380

tabindex integer 0 Sets the tabbing order for links. page 372
 (Table Page 1 of 2)
580

APPENDIX D: SMIL Tag Summary
Examples

<video src=”video.rm” region=”video_region”>
 <area href=”http://www.example.com/context.html” external=”true” rn:sendTo=”_rpcontextwin”
 sourcePlaystate=”play”>
 <rn:param name=”width” value=”320”/>
 <rn:param name=”height” value=”240”/>
 </area>
</video>

<video src=”video.rm” region=”video_region”>
 <area href=”rtsp://helixserver.example.com/video2.rm” shape=”circle” coords=”80,60,30”
 begin=”5s” end=”45s” show=”new” sourcePlaystate=”play” destinationPlaystate=”play”/>
</video>

Animation Tags

<animate/>

The <animate/> tag is the basic animation tag. Other animation tags are variations of
<animate/>. The targetElement and attributeName attributes are generally required, as well as one
of the to, by, or values attributes. For more on this tag, see “Creating Basic Animations” on page
423.

target name current
window

Identifies a window or a SMIL region. page 377
page 381

width pixels 330 Sets pane width in <rn:param>. page 376

SMIL 2.0 <animate/> Tag Attributes

Attribute Value Default Function Reference

accumulate none|sum none Makes a repeating animation build with
each iteration when set to sum.

page 434

additive replace|sum replace Adds the animation value to the
existing attribute value if set to sum.

page 434

attributeName attribute_name (none) Selects the attribute to animate. page 424

begin time_value 0s Delays normal playback time. page 316

by pixels|percentage|
color_value

(none) Animates the element by a certain
amount. Do not use with to.

page 428

 (Table Page 1 of 2)

SMIL 2.0 <area/> Tag Attributes (continued)

Attribute Value Default Function Reference

 (Table Page 2 of 2)
581

RealNetworks Production Guide
Examples

<animate targetElement=”video_region” attributeName=”width” to=”380” dur=”3s”/>

<animate targetElement=”image_region” attributeName=”width” dur=”2s” by="16” accumulate=”sum”
repeatCount=”4” calcMode=”discrete”/>

calcMode discrete|linear|
paced

linear Controls the flow of an animation. page 431

dur time_value|indefinite media Sets the total time the animation or one
of its repeating cycles plays.

page 319

end time_value (none) Sets the end time for the animation. page 316

fill auto|default|freeze|
hold|remove

auto|
default

Determines the fill state when the
animation is no longer active.

page 329

from pixels|percentage|
color_value

(none) Sets a starting point for the animation.
Use with to or by.

page 428

id name (none) Names the animation for reference by
other elements.

page 200

repeatCount integer|indefinite|
fractional_value

0 Repeats the animation the specified
number of times, or indefinitely.

page 325

repeatDur time_value|indefinite 0s Repeats the animation the specified
amount of time.

page 325

restart always|default|never|
whenNotActive

always Determines if the animation can restart. page 354

targetElement ID (none) Identifies the tag that contains the
animated attribute.

page 424

to pixels|percentage|
color_value

(none) Sets an end point for the animation. Do
not use with by.

page 428

values pixels|percentage|
color_value

(none) Defines a list of values applied to the
animated attribute.

page 430

SMIL 2.0 <animate/> Tag Attributes (continued)

Attribute Value Default Function Reference

 (Table Page 2 of 2)
582

APPENDIX D: SMIL Tag Summary
<animateColor/>

The <animateColor/> tag is similar to <animate/>, but it works for color animations only. The
targetElement and attributeName attributes are generally required, as well as one of the to, by, or
values atttributes. For more on this tag, see “Animating Colors” on page 436.

Example

<animateColor targetElement="image_region" attributeName="backgroundColor"
values="red;blue;yellow" calcMode=”discrete” begin="1s" dur="12s" fill="freeze"/>

SMIL 2.0 <animateColor/> Tag Attributes

Attribute Value Default Function Reference

attributeName attribute_name (none) Selects the attribute to animate. page 424

begin time_value 0s Delays normal playback time. page 316

by pixels|percentage|
color_value

(none) Animates the element by a certain
amount. Do not use with to.

page 428

calcMode discrete|linear|
paced

linear Controls the flow of an animation. page 431

dur time_value|indefinite media Sets the total time the animation or one
of its repeating cycles plays.

page 319

end time_value (none) Sets the end time for the animation. page 316

fill auto|default|freeze|
hold|remove

auto|
default

Determines the fill state when the
animation is no longer active.

page 329

from pixels|percentage|
color_value

(none) Sets a starting point for the animation.
Use with to or by.

page 428

id name (none) Names the animation for reference by
other elements.

page 200

restart always|default|never|
whenNotActive

always Determines if the animation can restart. page 354

targetElement ID (none) Identifies the tag that contains the
animated attribute.

page 424

to pixels|percentage|
color_value

(none) Sets an end point for the animation. Do
not use with by.

page 428

values pixels|percentage|
color_value

(none) Defines a list of values applied to the
animated attribute.

page 430
583

RealNetworks Production Guide
<animateMotion/>

The <animateMotion/> tag can move an element both horizontally and vertically. The
targetElement attribute is generally required, as well as one of the to, by, or values atttributes.
For more on this tag, see “Creating Horizontal and Vertical Motion” on page 437.

SMIL 2.0 <animateMotion/> Tag Attributes

Attribute Value Default Function Reference

accumulate none|sum none Makes a repeating animation build with
each iteration when set to sum.

page 434

additive replace|sum replace Adds the animation value to the
existing attribute value when set to sum.

page 434

begin time_value 0s Delays normal playback time. page 316

by pixels|percentage|
color_value

(none) Animates the element by a certain
amount. Do not use with to.

page 428

calcMode discrete|linear|
paced

paced Controls the flow of an animation. page 431

dur time_value|indefinite media Sets the total time the animation or one
of its repeating cycles plays.

page 319

end time_value (none) Sets the end time for the animation. page 316

fill auto|default|freeze|
hold|remove

auto|
default

Determines the fill state when the
animation is no longer active.

page 329

from pixels|percentage|
color_value

(none) Sets a starting point for the animation.
Use with to or by.

page 428

id name (none) Names the animation for reference by
other elements.

page 200

repeatCount integer|indefinite|
fractional_value

0 Repeats the animation the specified
number of times, or indefinitely.

page 325

repeatDur time_value|indefinite 0s Repeats the animation the specified
amount of time.

page 325

restart always|default|never|
whenNotActive

always Determines if the animation can restart. page 354

targetElement ID (none) Identifies the tag that contains the
animated attribute.

page 424

to pixels|percentage|
color_value

(none) Sets an end point for the animation. Do
not use with by.

page 428

values pixels|percentage|
color_value

(none) Defines a list of values applied to the
animated attribute.

page 430
584

APPENDIX D: SMIL Tag Summary
Example

<animateMotion targetElement="image_region" values="180,180;60,340;125,95"
calcMode="discrete" begin="7s" dur="5s" fill="freeze"/>

<set/>

The <set/> tag sets an attribute to a specified value. The targetElement, attributeName, and to
attributes are required. For more on this tag, see “Setting an Attribute Value” on page 438.

Example

<set targetElement=”video_region” attributeName=”backgroundColor” to=”blue” dur=”30s”/>

SMIL 2.0 <set/> Tag Attributes

Attribute Value Default Function Reference

attributeName attribute_name (none) Selects the attribute to animate. page 424

begin time_value 0s Delays normal playback time. page 316

dur time_value|indefinite media Sets the total time the animation or one
of its repeating cycles plays.

page 319

end time_value (none) Sets the end time for the animation. page 316

fill auto|default|freeze|
hold|remove

auto|
default

Determines the fill state when the
animation is no longer active.

page 329

id name (none) Names the animation for reference by
other elements.

page 200

restart always|default|never|
whenNotActive

always Determines if the animation can restart. page 354

targetElement ID (none) Identifies the tag that contains the
animated attribute.

page 424

to pixels|percentage|
color_value

(none) Sets the attribute value. page 428
585

RealNetworks Production Guide
586

A P P E N D I X
E

 Appendix E: REALTEXT TAG SUMMARY
Use this appendix for reference when writing RealText f iles. For complete
information on RealText, see Chapter 6. The section “Conventions Used in this
Guide” on page 12 explains the typographical conventions used in this appendix.

Window Tag Attributes
The <window> tag that starts each RealText clip can use the attributes specified in the following
table to set the overall clip parameters.

RealText <window> Tag Attributes

Attribute Value Default Function Reference

bgcolor name|#RRGGBB|
transparent

black (tickertape)
 white (all others)

Sets the window color. page 113

crawlrate pixels_per _second 20 (tickertape)
20 (marquee)
0 (all others)

Sets the horizontal text speed. page 117

duration hh:mm:ss.xy 60 seconds Specifies clip length. page 114

extraspaces use|ignore use Recognizes or ignores extra
spaces in text.

page 119

height pixels 30 (tickertape)
30 (marquee)
180 (all others)

Sets the window pixel height. page 113

link name|#RRGGBB blue Specifies the hyperlink color. page 117

loop false|true true (tickertape)
true (marquee)
false (all others)

Turns text looping on or off. page 118

scrollrate pixels_per _second 10 (scrollingnews)
0 (all others)

Sets the vertical text speed. page 117

type generic|tickertape|
marquee|scrollingnews|
teleprompter

generic Sets the window type. page 111

 (Table Page 1 of 2)
587

RealNetworks Production Guide
Example

<window type=”scrollingnews” width=”218” height=”420” bgcolor=”green” version=”1.5”
duration=”180.5” underline_hyperlinks=”false” link=”red”>
...all clip text...
</window>

Time and Position Tags
The tags in the following table let you time and position the text in a RealText clip.

Examples

<time begin=”10”/>Display at 10 seconds after clip starts.
<time begin=”15”/><clear/>Clear previous text and display at 15 seconds after clip starts.

<tu color=”yellow”>DJIA</tu>
<tl color=”blue”>7168.35 +36.52 </tl>

underline
_hyperlinks

false|true true Determines whether
hyperlinks are underlined.

page 117

version 1.0|1.2|1.4|1.5 1.0 Specifies RealText version.
Required for some character
sets.

page 116

width pixels 500 (tickertape)
500 (marquee)
320 (all others)

Sets the window pixel width. page 113

wordwrap false|true true Turns word wrap on or off. page 118

RealText Time and Position Tags

Tag Attributes Default Function Reference

<clear/> (none) (none) Clears all text from the window. page 122

<pos/> x=“pixels”|y=“pixels” (none) Positions text. page 122

<required>...
</required>

(none) (none) Ensures that text is delivered. page 123

<time/> begin=“hh:mm:ss.xy”|
end=“hh:mm:ss.xy”

(none) Sets time when text appears or
disappears.

page 120

<tl>...</tl> color=”name|#RRGGBB” green Places text at bottom of ticker tape. page 123

<tu>...</tu> color=”name|#RRGGBB” white Places text at top of ticker tape. page 123

RealText <window> Tag Attributes

Attribute Value Default Function Reference

 (Table Page 2 of 2)
588

APPENDIX E: RealText Tag Summary
Font Tag Attributes
The tag lets you select fonts and character sets.

Examples

This is red text against a green background.

This text is one size larger than the preceding text.

This text is in the Verdana font.

...Korean text...

Layout and Appearance Tags
The following RealText tags affect the layout and appearance of text.

RealText Tag Attributes

Attribute Value Default Function Reference

bgcolor name|#RRGGBB transparent Sets the text background color. page 130

charset us-ascii|iso-8859-1|
mac-roman|x-sjis|
gb2312|big5|iso-2022-kr

iso-8859-1 Specifies character set used to
display text.

page 124

color name|#RRGGBB (none) Controls font color, except for
TickerTape window.

page 130

face (see font tables) Times New
Roman

Sets the text face. page 127

size -2|-1|+0|+1|+2|+3|+4
or
1|2|3|4|5|6|7

+0 Sets the font size. page 129

RealText Layout and Apperance Tags

Tag Function Reference

... Bolds the enclosed text. page 134

 Creates a line break and displays text one line down. page 132

<center>...</center> Centers the enclosed text. page 133

<hr/> Acts like two
 tags, but does not create a horizontal rule.
Provided for HTML compatibility.

page 134

<i>...</i> Italicizes the enclosed text. page 134

... Acts like a
 tag. Provided for HTML compatibility. page 134
 (Table Page 1 of 2)
589

RealNetworks Production Guide
Examples

<center>This is centered text.</center>

This is bolded text.

This is <u>underlined</u> text.

Hyperlinking Commands
You can use <a> and tags to create a link out of enclosed text. The link can open a URL in
RealPlayer or the viewer’s browser, open an e-mail message, or issue a RealPlayer command.

Examples

send e-mail

Play Next Clip

Visit RealGuide

Send Me an Instant Message

... Indents text, but does not number it. Provided for HTML
compatibility.

page 133

<p>...</p> Creates a text paragraph. page 132

<pre>...</pre> Displays text in a monospace font and preserves extra spaces. Works
the same as in HTML.

page 133

<s>...</s> Strikes through the enclosed text. page 134

<u>...</u> Underlines the enclosed text. page 134

... Indents text, but does not add bullets to it. Provided for HTML
compatibility.

page 134

RealText <a> Tag Attributes

Attribute Value Function Reference

href=“command” target=“_player” command:seek(time)|
command:pause()|
command:play()

Creates hyperlink that issues a
command.

page 137

href=“command:openwindow()” name|URL|
zoomlevel

Opens new, named media
windows for the URL.

page 384

href=“mailto:address” email_address Opens e-mail message. page 135

href=“URL” target=”_player” Creates hyperlink to URL. page 135

RealText Layout and Apperance Tags (continued)

Tag Function Reference

 (Table Page 2 of 2)
590

APPENDIX E: RealText Tag Summary
Seek

Play

<a href=”command:openwindow(feature, rtsp://helixserver.example.com/comedy.rm,
zoomlevel=double)”>Comedy Hour
591

RealNetworks Production Guide
592

A P P E N D I X
F

 Appendix F: REALPIX TAG SUMMARY
This appendix serves as a quick reference for RealPix markup. For complete
information on RealPix, see Chapter 7. The section “Conventions Used in this
Guide” on page 12 explains the typographical conventions used in this appendix.
In the following tables, an asterisk (*) indicates a required attribute.

<imfl>...</imfl>
The RealPix markup starts with <imfl> and ends with </imfl>. All RealPix markup must occur
between these tags. For more information, see “Structure of a RealPix File” on page 150.

<head/>
The <head/> tag comes just after the opening <imfl> tag, defining overall presentation settings,
such as the streaming bit rate and the duration. Unlike the <head> tags in RealText and SMIL,
the RealPix <head/> tag closes with a slash, and does not use a corresponding end tag. See
“Setting Slideshow Characteristics” on page 156 for more on the <head/> tag.

RealPix <head/> Tag Attributes

Attribute Value Default Function Reference

aspect false|true true Handles image aspect ratios. page 161

author text (none) Gives the name of the author. page 159

background-color name|#RRGGBB black Sets an initial background color. page 160

bitrate* bits_per_second (none) Indicates required bandwidth. page 159

copyright text (none) Gives the copyright notice. page 159

duration* time_value (none) Sets the presentation duration. page 158

height* pixels (none) Specifies the presentation height. page 157

maxfps integer (calculated) Sets the maximum effect frame rate. page 162

preroll seconds (calculated) Allots time for initial buffering. page 160
 (Table Page 1 of 2)
593

RealNetworks Production Guide
<image/>
The <image/> tags appear after the <head/> tag. Each tag specifies an image URL, and assigns
the image a handle. For more on <image/>, see “Defining Images” on page 163.

<animate/>
The <animate/> tag starts an animated GIF cycling through its frames. For more information,
see “Controlling an Animated GIF Image” on page 173.

timeformat milliseconds|
dd:hh:mm:ss.xyz

milliseconds Indicates the format of time
attributes.

page 157

title text (none) Gives the presentation title. page 159

url URL (none) Sets a hyperlink URL for images. page 161

width* pixels (none) Specifies the presentation width. page 157

RealPix <image/> Tag Attributes

Attribute Value Default Function Reference

handle* integer (none) Sets an ID that effect tags use to select an image. page 163

name* file_name (none) Gives the file name and path. page 164

size bytes (none) Indicates the file size for Web server delivery. page 164

mime mime_type (none) Specifies a mime type for Web server delivery. page 165

RealPix <animate/> Tag Attributes

Attribute Value Default Function Reference

aspect false|true set in <head/> Keeps or ignores the image aspect ratio. page 168

dsth pixels height value Specifies the height of the destination rectangle. page 177

dstw pixels width value Specifies the width of the destination rectangle. page 177

dstx pixels 0 Sets x-coordinate of the destination rectangle. page 177

dsty pixels 0 Sets y-coordinate of the destination rectangle. page 177

duration* time_value (none) Specifies the effect’s duration. page 166

maxfps integer set in <head/> Controls the maximum animation frame rate. page 168

srch pixels image height Specifies the height of the source rectangle. page 177
 (Table Page 1 of 2)

RealPix <head/> Tag Attributes (continued)

Attribute Value Default Function Reference

 (Table Page 2 of 2)
594

APPENDIX F: RealPix Tag Summary
<crossfade/>
The <crossfade/> tag fades a new image into an existing one. For more information, see
“Crossfading One Image Into Another” on page 170.

srcw pixels image width Specifies the width of the source rectangle. page 177

srcx pixels 0 Sets the x-coordinate of the source rectangle. page 177

srcy pixels 0 Sets the y-coordinate of the source rectangle. page 177

start* time_value (none) Gives the effect’s starting time. page 166

target* handle (none) Indicates the image used for the effect. page 167

url URL set in <head/> Sets a link URL while the effect is active. page 167

RealPix <crossfade/> Tag Attributes

Attribute Value Default Function Reference

aspect false|true set in <head/> Keeps or ignores the image aspect ratio. page 168

dsth pixels height value Specifies the height of the destination rectangle. page 177

dstw pixels width value Specifies the width of the destination rectangle. page 177

dstx pixels 0 Sets x-coordinate of the destination rectangle. page 177

dsty pixels 0 Sets y-coordinate of the destination rectangle. page 177

duration* time_value (none) Specifies the effect’s duration. page 166

maxfps integer set in <head/> Controls the maximum frame rate. page 168

srch pixels image height Specifies the height of the source rectangle. page 177

srcw pixels image width Specifies the width of the source rectangle. page 177

srcx pixels 0 Sets the x-coordinate of the source rectangle. page 177

srcy pixels 0 Sets the y-coordinate of the source rectangle. page 177

start* time_value (none) Gives the effect’s starting time. page 166

target* handle (none) Indicates the image used for the effect. page 167

url URL set in <head/> Sets a link URL while the effect is active. page 167

RealPix <animate/> Tag Attributes (continued)

Attribute Value Default Function Reference

 (Table Page 2 of 2)
595

RealNetworks Production Guide
<fadein/>
The <fadein/> tag fades an image into the display area. For more information, see “Fading In on
an Image” on page 169.

<fadeout/>
The <fadeout/> tag fades the display area into a solid color. For more information, see “Fading
an Image Out to a Color” on page 170.

RealPix <fadein/> Tag Attributes

Attribute Value Default Function Reference

aspect false|true set in <head/> Keeps or ignores the image aspect ratio. page 168

dsth pixels height value Specifies the height of the destination rectangle. page 177

dstw pixels width value Specifies the width of the destination rectangle. page 177

dstx pixels 0 Sets x-coordinate of the destination rectangle. page 177

dsty pixels 0 Sets y-coordinate of the destination rectangle. page 177

duration* time_value (none) Specifies the effect’s duration. page 166

maxfps integer set in <head/> Controls the maximum frame rate. page 168

srch pixels image height Specifies the height of the source rectangle. page 177

srcw pixels image width Specifies the width of the source rectangle. page 177

srcx pixels 0 Sets the x-coordinate of the source rectangle. page 177

srcy pixels 0 Sets the y-coordinate of the source rectangle. page 177

start* time_value (none) Gives the effect’s starting time. page 166

target* handle (none) Indicates the image used for the effect. page 167

url URL set in <head/> Sets a link URL while the effect is active. page 167

RealPix <fadeout/> Tag Attributes

Attribute Value Default Function Reference

color* name|
#RRGGBB

(none) Sets the fadeout color. page 555

dsth pixels height value Specifies the height of the destination rectangle. page 177

dstw pixels width value Specifies the width of the destination rectangle. page 177

dstx pixels 0 Sets the x-coordinate of the destination rectangle. page 177

dsty pixels 0 Sets the y-coordinate of the destination rectangle. page 177

duration* time_value (none) Specifies the effect’s duration. page 166
 (Table Page 1 of 2)
596

APPENDIX F: RealPix Tag Summary
<fill/>
The <fill/> tag paints a color rectangle over the display area. For more information, see
“Painting a Color Fill” on page 171.

<wipe/>
The <wipe/> tag introduces a new image with one of several wipe transition effects. For more
information, see “Creating a Wipe Effect” on page 172.

maxfps integer set in <head/> Controls the maximum frame rate. page 168

start* time_value (none) Gives the effect’s starting time. page 166

RealPix <fill/> Tag Attributes

Attribute Value Default Function Reference

color* name|
#RRGGBB

(none) Sets the fill color. page 555

dsth pixels height value Specifies the height of the destination rectangle. page 177

dstw pixels width value Specifies the width of the destination rectangle. page 177

dstx pixels 0 Sets the x-coordinate of the destination rectangle. page 177

dsty pixels 0 Sets the y-coordinate of the destination rectangle. page 177

start* time_value (none) Gives the effect start time. page 166

RealPix <wipe/> Tag Attributes

Attribute Value Default Function Reference

aspect false|true set in <head/> Keeps or ignores the image aspect ratio. page 168

direction* left|right|
up|down

(none) Sets the wipe effect direction. page 173

dsth pixels height value Specifies height of the destination rectangle. page 177

dstw pixels width value Specifies width of the destination rectangle. page 177

dstx pixels 0 Sets x-coordinate of the destination rectangle. page 177

dsty pixels 0 Sets y-coordinate of the destination rectangle. page 177

duration* time_value (none) Specifies the effect’s duration. page 166
 (Table Page 1 of 2)

RealPix <fadeout/> Tag Attributes (continued)

Attribute Value Default Function Reference

 (Table Page 2 of 2)
597

RealNetworks Production Guide
<viewchange/>
The <viewchange/> tag lets you zoom in or out on an image, as well as pan across an image. For
more information, see “Zooming In, Zooming Out, and Panning” on page 174.

maxfps integer set in <head/> Controls the maximum frame rate. page 168

srch pixels image height Specifies the height of the source rectangle. page 177

srcw pixels image width Specifies the width of the source rectangle. page 177

srcx pixels 0 Sets the x-coordinate of the source rectangle. page 177

srcy pixels 0 Sets the y-coordinate of the source rectangle. page 177

start* time_value (none) Gives the effect’s starting time. page 166

target* handle (none) Indicates the image used for the effect. page 167

type* normal|push (none) Specifies the type of wipe effect. page 173

url URL set in <head/> Sets a link URL while the effect is active. page 167

RealPix <viewchange/> Tag Attributes

Attribute Value Default Function Reference

dsth pixels height value Specifies the height of the destination
rectangle.

page 177

dstw pixels width value Specifies the width of the destination rectangle. page 177

dstx pixels 0 Sets x-coordinate of the destination rectangle. page 177

dsty pixels 0 Sets y-coordinate of the destination rectangle. page 177

duration* time_value (none) Specifies the effect’s duration. page 166

maxfps integer set in <head/> Controls the maximum frame rate. page 168

srch pixels image height Specifies the height of the source rectangle. page 177

srcw pixels image width Specifies the width of the source rectangle. page 177

srcx pixels 0 Sets the x-coordinate of the source rectangle. page 177

srcy pixels 0 Sets the y-coordinate of the source rectangle. page 177

start* time_value (none) Gives the effect’s starting time. page 166

RealPix <wipe/> Tag Attributes (continued)

Attribute Value Default Function Reference

 (Table Page 2 of 2)
598

A P P E N D I X
G

 Appendix G: RAM FILE SUMMARY
This appendix summarizes Ram file parameters, which are described in the section
“Passing Parameters Through a Ram File” on page 513. Be sure to familiarize
yourself with “Conventions Used in this Guide” on page 12, which explains the
typographical conventions used in this appendix.

Parameter Syntax
A Ram file is plain text file that uses the file extension .ram. Each line holds the full URL to a
clip or SMIL presentation, and can include parameters that affect playback. Separate the first
parameter from the URL with a question mark (?), as shown here:

rtsp://helixserver.example.com/video1.rm?parameter=value

To set two or more parameters for the same clip, precede the second and all subsequent
parameters with ampersands (&) instead of question marks:

rtsp://helixserver.example.com/video1.rm?parameter=value¶meter=value¶meter=value...

Parameters and Values

Ram File Parameters and Values

Parameter Value Default Function Reference

author text (none) Indicates the clip author. page 519

clipinfo title=text|
artist name=text|
album name=text|
genre=text|
copyright=text|
year=text|
cdnum=number|
comments=text

(none) Gives extended clip information. page 520

copyright text (none) Gives the copyright notice page 519
 (Table Page 1 of 2)
599

RealNetworks Production Guide
Examples

rtsp://helixserver.example.com/video1.rm?rpcontextheight=250
&rpcontextwidth=280&rpcontexturl=”http://www.example.com/relatedinfo1.html”

rtsp://helixserver.example.com/video2.rm?rpurl=”http://www.example.com/index.html”

rtsp://helixserver.example.com/sample1.smil?screensize=full

rtsp://helixserver.example.com/audio1.rm?start=55&end=1:25

rtsp://helixserver.example.com/introvid.rm?title="Introduction to Streaming Media
Production"&author="RealNetworks, Inc."©right="©2001, RealNetworks, Inc."

rtsp://helixserver.example.com/song1.rm?clipinfo="title=Artist of the Year|artist name=Your Name
Here|album name=My Debut|genre=Rock|copyright=2001|year=2001|comments=This one really
knows how to rock!"

end hh:mm:ss.x (none) Ends the clip at the specified point. page 517

mode normal|theater|
toolbar

normal Opens RealPlayer in one of three
initial playback modes.

page 517

rpcontextheight pixels media height Sets the related info pane’s height. page 514

rpcontextparams parameters (none) Adds parameters to rpcontexturl. page 514

rpcontexttime dd:hh:mm:ss.x 0 Specifies a time at which an HTML
page displays in the related info pane.

page 515

rpcontexturl URL|_keep (none) Displays the specified URL in the
related info pane.

page 514

rpcontextwidth pixels 330 Sets the related info pane width. page 514

rpurl URL (none) Gives a URL for the media browser. page 515

rpurlparams parameters (none) Appends parameters to rpurl. page 515

rpurltarget _rpbrowser|name _rpbrowser Sets the target for rpurl as the media
browser pane or a secondary window.

page 515

rpvideofillcolor color_value black Sets the media playback pane color. page 515

screensize double|full|
original

original Sets the size at which the clip or
presentation opens.

page 517

showvideo
controlsoverlay

0|1 1 Hides the video controls overlay in
the media playback pane when 0.

page 517

start hh:mm:ss.x 0 Starts the clip at the specified point. page 517

title text (none) Specifies the clip title. page 519

Ram File Parameters and Values (continued)

Parameter Value Default Function Reference

 (Table Page 2 of 2)
600

A P P E N D I X
H

 Appendix H : FILE TYPE SUMMARY
The following tables summarize the file types commonly streamed
to RealPlayer. This is not a definitive list of all f ile types, though.
Plug-in technology allows RealPlayer to play virtually any file type.

RealPlayer Standard Streaming Clip Types

Extension File Type Reference

.rm or .ra RealAudio page 59

.rm RealVideo page 73

.rmvb RealMedia variable bit rate page 73

.rp RealPix streaming image markup page 145

.rt RealText streaming text page 107

.swf Flash Player file page 87

RealPlayer Information Files

Extension File Type Reference

.ram Ram file to launch RealPlayer page 508

.rpm Ram file for embedded presentations page 485

.smil, .smi SMIL file for layout and timing page 195

Image Files Types Playable Directly in RealPlayer and RealPix

Extension File Type Reference

.gif GIF87, GIF89, or animated GIF image page 42

.jpg, .jpeg JPEG (nonprogressive) image page 42

.png PNG image page 42
601

RealNetworks Production Guide
602

A P P E N D I X
I

 Appendix I: LANGUAGE CODES
As “Switching Between Language Choices” on page 446 explains, SMIL can list
different language choices that RealPlayer chooses from based on its language
preference. The following table lists the codes you can use in a SMIL file to indicate
clips created for specific languages.
Code Language

af Afrikaans

sq Albanian

ar-iq Arabic (Iraq)

ar-dz Arabic (Algeria)

ar-bh Arabic (Bahrain)

ar-eg Arabic (Egypt)

ar-jo Arabic (Jordan)

ar-kw Arabic (Kuwait)

ar-lb Arabic (Lebanon)

ar-ly Arabic (Libya)

ar-ma Arabic (Morocco)

ar-om Arabic (Oman)

ar-qa Arabic (Qatar)

ar-sa Arabic (Saudi Arabia)

ar-sy Arabic (Syria)

ar-tn Arabic (Tunisia)

ar-ae Arabic (U.A.E.)

ar-ye Arabic (Yemen)

eu Basque

bg Bulgarian

ca Catalan

zh-hk Chinese (Hong Kong)

zh-cn Chinese (People’s Republic)

zh-sg Chinese (Singapore)

zh-tw Chinese (Taiwan)

hr Croatian

cs Czech

da Danish

nl Dutch (Standard)

nl-be Dutch (Belgian)

en English

en-au English (Australian)

en-bz English (Belize)

en-gb English (British)

en-ca English (Canadian)

en English (Caribbean)

en-ie English (Ireland)

en-jm English (Jamaica)

en-nz English (New Zealand)

en-za English (South Africa)

Code Language
603

RealNetworks Production Guide
en-tt English (Trinidad)

en-us English (United States)

et Estonian

fo Faeroese

fi Finnish

fr-be French (Belgian)

fr-ca French (Canadian)

fr-lu French (Luxembourg)

fr French (Standard)

fr-ch French (Swiss)

de-at German (Austrian)

de-li German (Liechtenstein)

de-lu German (Luxembourg)

de German (Standard)

de-ch German (Swiss)

el Greek

he Hebrew

hu Hungarian

is Icelandic

in Indonesian

it Italian (Standard)

it-ch Italian (Swiss)

ja Japanese

ko Korean

ko Korean (Johab)

lv Latvian

lt Lithuanian

no Norwegian

pl Polish

pt-br Portuguese (Brazilian)

pt Portuguese (Standard)

ro Romanian

Code Language

sr Serbian

sk Slovak

sl Slovenian

es-ar Spanish (Argentina)

es-bo Spanish (Bolivia)

es-cl Spanish (Chile)

es-co Spanish (Colombia)

es-cr Spanish (Costa Rica)

es-do Spanish (Dominican Republic)

es-ec Spanish (Ecuador)

es-sv Spanish (El Salvador)

es-gt Spanish (Guatemala)

es-hn Spanish (Honduras)

es-mx Spanish (Mexican)

es-ni Spanish (Nicaragua)

es-pa Spanish (Panama)

es-py Spanish (Paraguay)

es-pe Spanish (Peru)

es-pr Spanish (Puerto Rico)

es Spanish (Spain)

es-uy Spanish (Uruguay)

es-ve Spanish (Venezuela)

sv Swedish

sv-fi Swedish (Finland)

th Thai

tr Turkish

uk Ukrainian

vi Vietnamese

Code Language
604

GLOSSARY
A artifact
A visual imperfection in an encoded video clip. Too many artifacts can
make the video look blocky.

B bandwidth
The upper limit on the amount of data, typically expressed as Kilobits per
second (Kbps), that can pass through a network connection.

binary tag
A SMIL tag that comprises opening and closing tags, such as <ref> and
</ref>. Many unary tags can become binary tags when necessary to enclose
other tags.

bit
The smallest unit of measure of data in a computer. A bit has a binary
value, either 0 or 1.

bit rate
A measure of bandwidth, expressed as the number of bits transmitted per
second. A 28.8 Kbps modem, for example, can transmit or receive around
29,000 bits per second.

blank time
A period during a presentation in which RealPlayer is not paused, but no
activity occurs onscreen. You typically insert blank time with the SMIL
begin attribute.

broadcast
To deliver a presentation, whether live or prerecorded, in which all viewers
join the presentation in progress. Contrast to on-demand.

buffering
The receiving and storing of data before it is played back. A clip’s initial
buffering is called preroll. After this preroll, excessive buffering may stall
the presentation.
605

RealNetworks Production Guide
byte
A common measurement of data. One byte consists of 8 bits.

C cable modems
Devices that allow rapid transmission and reception of data over
television cable. They are digital devices, unlike dial-up modems, which
transmit analog data.

camel case
A capitalization convention in which words in a phrase are joined, and
each word after the first begins with a capital letter. SMIL 2.0 attributes
and values generally use camel case, as in soundLevel or whenNotActive.

CBR
Constant Bit Rate. A type of RealVideo encoding in which all parts of the
video play back at the same bit rate. Contrast to VBR.

CHTTP
A version of HTTP supported by RealPlayer. Files designated with chttp://
are downloaded through HTTP and stored in RealPlayer’s cache.

client
A software application that receives data from a server. A Web browser is a
client of a Web server. RealPlayer is a client of Helix Server.

clip
A media file within a presentation. Clips typically have an internal
timeline, as with RealAudio and RealVideo.

codec
Coder/decoder. Codecs convert data between uncompressed and
compressed formats, reducing the bandwidth a clip consumes.

D download
To send a file over a network with a nonstreaming protocol such as HTTP.
Contrast to stream.

DSL
Digital Subscriber Line. A technology for transmitting digital data over a
regular telephone line much faster than through dial-up modems.

duress stream
A low-bandwidth SureStream audio or video stream that Helix Server uses
if a connection’s available bandwidth drops greatly.
606

 Glossary
E encoding
Converting a file into a compressed, streaming format. For example, you
can encode WAV files as RealAudio clips.

F Flash
A software application and an animation format created by Macromedia.
RealPlayer can play Flash animations and stream them in parallel with
other clips, such as RealAudio clips.

Flash Player file
A compressed Flash file format (file extension .swf) suitable for streaming.
To stream Flash, you export the Flash Player file and tune it so that it
plays well in RealPlayer.

fps
Frames Per Second. The number of video frames that displays each second
in a streaming video clip.

frequency response
A measure of audio clip quality. The higher a clip’s frequency response,
the more frequencies it can faithfully reproduce.

H Helix Server
RealNetworks server software used to stream multimedia presentations to
RealPlayer.

Helix Server administrator
The person in charge of setting up and running Helix Server.

HTTP
Hypertext Transport Protocol. The protocol used by Web servers to
communicate with Web browsers. In contrast, Helix Server streams clips
to RealPlayer with RTSP. See also CHTTP.

I inline switching
Switching between alternative clips without using a SMIL <switch> tag.

ISDN
Integrated Services Digital Network. Technology that makes digital data
connections at 64 or 112 Kbps possible over telephone lines.

ISP
Internet Service Provider. A company that provides access to the Internet.
Many ISPs have Helix Server available to stream media clips.
607

RealNetworks Production Guide
K kilobit (Kb)
A common unit of data measurement equal to 1024 bits. A kilobit is
usually referred to in the context of bit rate per unit of time, such as
Kilobits per second (Kbps).

kilobyte (KB)
A common unit of data measurement equal to 1024 bytes or 8 Kilobits.

L LAN
Local Area Network. A computer network confined to a local area, such as
a single building. LANs vary in speed, with bandwidth shared among all
networked devices.

lossy
A compression scheme that lowers clip size by discarding nonessential
data from the source file. Both RealAudio and RealVideo are lossy.

M metafile
Another name for a Ram file.

mouseover
The action of moving a computer screen pointer over an interactive area.
An animated button may change appearance on a mouseover, for example.

N namespace
An XML declaration that identifies the features used in a SMIL
presentation. For SMIL 2.0 and higher, the <smil> tag must declare a
namespace.

O on-demand
A type of streaming in which a clip plays from start to finish when a user
clicks a link. Most clips are streamed this way. Contrast to broadcast.

P PNA
A proprietary protocol Helix Server uses for backward compatibility with
RealPlayer 3 through 5. URLs using PNA start with pnm://.

port
A connection to a server, designated by a number such as 8080. Helix
Server uses different ports for the RTSP, HTTP, and PNA protocols.
608

 Glossary
prefetch
To stream clip data to RealPlayer before the clip plays back. A clip’s preroll
can be prefetched minutes before the clip plays, for example, masking the
preroll from the viewer.

preroll
Buffering that occurs just before a clip plays back. Preroll should be no
more than 15 seconds.

presentation
A group of clips coordinated through SMIL and streamed from Helix
Server to RealPlayer.

R Ram file
A text file that uses the file extension .ram or .rpm . It launches RealPlayer
and gives it the URL to a streaming clip or presentation.

RDT
RealNetworks Data Transport. The proprietary data package Helix Server
uses (along with RTSP) when communicating with RealPlayer. Contrast
to RTP.

RealAudio
A clip type for streaming audio over a network. RealAudio clips use the .rm
extension.

RealOne Player
The successor to RealPlayer 8, RealOne Player combines streaming and
digital download technologies. It supports the SMIL 2.0 and 1.0
standards.

RealPix
A clip type (file extension .rp) for streaming still images over a network.
RealPix uses a markup language for creating special effects such as fades
and zooms.

RealPlayer 10
The latest version of the RealPlayer media client. It supports all of the
media formats and streaming features described in this guide.

RealPlayer G2
The RealNetworks client software that introduced plug-ins and the ability
to update itself. It, along with the later RealPlayer 7 and RealPlayer 8,
supports the SMIL 1.0 standard.
609

RealNetworks Production Guide
RealProducer
The primary RealNetworks tool for encoding RealAudio and RealVideo
clips.

RealText
A clip type (file extension .rt) for streaming text over a network. It uses a
markup language for formatting text.

real-time
Delivered as it occurs. For example, a live event is streamed across a
network in a real-time broadcast.

RealVideo
A clip type for streaming video over a network. RealVideo clips use the
extension .rm.

rebuffering
An undesirable state in which RealPlayer must pause a presentation to
wait for streaming data to arrive. Rebuffering can result from network
conditions, or a poorly produced presentation.

RTP
Real-Time Transport Protocol. The open, standards-based data package
Helix Server uses (along with RTSP) to communicate with RTP-based
clients. Contrast to RDT.

RTSP
Real-Time Streaming Protocol. An open, standards-based control protocol
that Helix Server uses to stream clips to RealPlayer or any RTP-based
client. Contrast to HTTP.

S server
1. A software application, such as a Web server or Helix Server, that sends
requested data over a network.

2. A computer that runs server software.

Shockwave Flash
See Flash Player file.

SMIL
Synchronized Multimedia Integration Language. A markup language for
specifying how and when each clip plays within a presentation. SMIL files
use the extension .smil.
610

 Glossary
stream
1. To send a media clip over a network so that it begins playing back as
quickly as possible.

2. A flow of a single type of data, measured in Kilobits per second (Kbps).
A RealVideo clip’s soundtrack is one stream, for example.

SureStream
A RealNetworks technology that enables a RealAudio or RealVideo clip to
stream at multiple bit rates.

U unary tag
A SMIL tag that includes a closing slash, as in <ref/>. Many unary tags can
become binary tags when necessary to enclose other tags.

URL
Uniform Resource Locator. A location description that enables a Web
browser or RealPlayer to receive a clip stored on a Web server or Helix
Server.

V VBR
Variable Bit Rate. A type of RealVideo encoding that enables RealPlayer to
play different parts of the video at different bit rates. Contrast to CBR.

X XML
Extensible Markup Language. The parent language for SMIL. XML allows
one to develop flexible, standardized languages for any purpose.
611

RealNetworks Production Guide
612

INDEX
A <a> tag, 362
<a> tag in RealText, 135
abstract attribute, 240
access keys

for clip timing, 351
for hyperlinks, 370

accessibility features
alternate description, 244
audio descriptions, 450
long description, 244
read order indexing, 245
system captions, 450

accesskey attribute
clip timing, 351
hyperlinks, 370

accumulate attribute, 434
activateEvent value, 348
ActiveX control, 484

basics of using, 489
class ID, 489
object ID, 489
scripting, 38

actuate attribute, 371
additive attribute, 434
alt attribute

clips, 244
hyperlinks, 372

<animate/> tag, 423
<animate/> tag in RealPix, 173
<animateColor/> tag

compared to <animate/>, 420
using, 436

animated GIFs
in RealPix, 173
SMIL timing overrides, 327

<animateMotion/> tag

compared to <animate/>, 420
using, 437

animation
Scalable Vector Graphics, 41
see Flash
see SMIL animation

<animation/> tag, 207
<area/> tag, 362
attributeName attribute, 424
audio

cables, 68
capture cards, 40
DC offset, 69
digitizing, 69
dynamics compression, 70
editing programs, 40
equipment quality, 67
for Flash, 92
frequency equalization, 70
gain compression, 68
input levels, 68
normalization, 70
optimizing, 69
production tools, 40
recording tips, 67
sampling width, 69
signal-to-noise ratio, 68
source media, 67
streaming steps, 65
volume control in regions

example, 307
setting, 294

see also RealAudio
audio descriptions, 450
<audio/> tag, 207
audio-only visualizations, 33
613

RealNetworks Production Guide
author attribute
in Ram file, 519
in RealPix, 159
in SMIL, 240

Authoring Kit, 25
autoupdate of RealPlayer, 43
AVI

compressed, 82

B tag in RealText, 134
backgroundColor attribute, 232

animating, 425, 427
clip source tag, 296
regions, 292
see also regions

backgroundOpacity attribute
animating, 427
using, 221

backward compatibility
RealPlayer clip support, 43
through Ram file, 510
through Ramgen, 525
through SMIL, 456

bandwidth
clip characteristics

Flash, 88
images, 208
RealAudio, 60
RealPix, 152
RealText, 109
RealVideo, 74
SMIL, 48

leaving for other processes, 47
multiclip presentations, 47
negotiation, 49
network connection speeds, 46
overview, 45
preroll, 46
rebuffering, 46
repeating clips, 327
SMIL switching, 448
SureStream clips, 49, 449
switching, 449
timeline considerations, 52

bandwidth attribute, 471

begin attribute
in clips, 317
in groups, 317
in hyperlinks, 363

beginEvent value, 345
Betacam video, 80
bit rate, see bandwidth
bitrate parameter, 209
borderColor attribute, 412
borderWidth attribute, 412
bottom attribute

<region/> tag, 283
<regPoint/> tag, 300
animating, 425, 427
clip source tag, 296

 tag in RealText, 132
broadcasting

audio volumes, 68
RealPix, 151
RealText, 110
stream synchronization, 354

<brush/> tag, 211
by attribute, 429

C cable modem bandwidth targets, 46
cable shielding, 68
caching

authoring example, 218
cache directory, 219
cache size, 219
CHTTP protocol, 217
control commands, 218
expiration rules, 219
overriding, 219
requirements, 217

calcMode attribute, 431
camel case, 198
captions

compared to subtitles, 462
filler clip, 463
RealPlayer preference for, 450
resizing for captions off, 464

capture cards, 40
<center> tag in RealText, 133
614

 Index
centering clips in regions
example, 306
through clip source tag, 299
with registration point, 302

character sets for RealText, 124
charset attribute, 230
chromaKey attribute, 222
chromaKeyOpacity attribute, 222
chromaKeyTolerance attribute, 222
CHTTP, 217
<clear/> tag in RealText, 122
clicking a clip to start or stop another clip,

348
clip information, 240
clip position and fit, 273
clip source tags

clip type indicators, 207
IDs, 208
linking

absolute file syntax, 214
base target, 215
Helix Server, 216
local files, 214
relative file syntax, 214
Web server, 216

Ram file as a clip, 211
SMIL file as a clip, 212

layouts, 213
timing, 213

clipBegin attribute, 318
clipEnd attribute, 318
clipinfo parameter in Ram file, 520
clock wipes, 401
close attribute, 279
codecs

see RealVideo
see RealAudio

color attribute
animating, 427
in <brush/> tag, 211

color depth switching, 454
colors

animating, 436
hexadecimal values, 556

six-digit, 556
three-digit, 556

mixing RGB and hexadecimal values, 558
names, 555
RealPix

background, 160
fill, 171

RealText, 130
region backgrounds, 292
RGB values, 557

percentages, 557
pixels, 557

compression
audio dynamics, 70
overview, 40
RealAudio, 59
RealVideo, 74

context pane, see related info pane
contextWindow attribute, 376
coords attribute, 364
copyright attribute

in Ram file, 519
in RealPix, 159
in SMIL, 240

copyright protection, 534
with Helix Server, 44
with Web server, 527

CPU
guidelines, 530
switching, 451

<crossfade/> tag in RealPix, 170
CSS2 standard

color values, 555
SMIL positioning similarities, 284

D delivery parameter, 209
destinationLevel attribute, 384
destinationPlaystate attribute, 379
digital rights management, 6, 534
digital video formats, 80
direction attribute, 409
documentation library, 13
double-size mode

overview, 34
615

RealNetworks Production Guide
doubling clip sizes, 517
download icon for RealPlayer, 530
downloading

RealPlayer plug-ins, 43
versus streaming, 507

DSL bandwidth targets, 46
dur attribute, 319

in repeating clip, 326
in transition effects, 409

E edge wipes, 396
<EMBED> tag, 485
embedded playback

ActiveX control, 489
aspect ratio, 499
automatic playback, 501
background color, 499
backwards compatibility, 491
basics, 485
centering clip, 499
compared to three-pane environment,

481
consoles, 497
image window, 491
laying out presentations, 502
local file links, 486
logo suppression, 500
looping playback

indefinitely, 501
specific number of times, 502

nonembedded links, 488
parameters

AUTOSTART, 501
BACKGROUNDCOLOR, 499
CENTER, 499
CONSOLE, 497
CONTROLS, 490
HEIGHT, 488
LOOP, 501
MAINTAINASPECT, 499
NOJAVA, 488
NOLOGO, 500
NUMLOOP, 502
REGION, 503
SHUFFLE, 502

SRC, 485
WIDTH, 488

RealPlayer controls
adding to page, 490
linking multiple controls, 497

shuffling playback, 502
size parameters

percentages, 488
pixels, 488

source parameter, 485, 490
supported browsers, 483
URL handling, 488
using in Web page, 481

end attribute
in clips, 317
in groups, 317
in hyperlinks, 363
in repeating clip, 326

end parameter in Ram file, 517
endEvent value, 345
endsync attribute, 322
erase attribute, 332
escape codes in Ram files, 520
example files, 11
<excl> tag, 261
exclusive groups

begin and end times, 317
clip interruption, 262
defining, 261
durations, 321
fill period

clip fills, 332
group default, 336
group fills, 334
group inheritance, 337

interactive timing, 261
priority classes

clips with no priority class, 267
defining, 263
effect on timing, 267
higher class interaction, 265
lower class interaction, 266
nesting, 267
peer interaction, 264

switching, 445
616

 Index
expandTabs attribute, 234
extension list, 601
external attribute, 374

F fade effects, 407
fadeColor attribute, 412
<fadein/> tag in RealPix, 169
<fadeout/> tag in RealPix, 170
file extension list, 601
fill attribute, 329

SMIL 1.0 and 2.0 differences, 205
transition value, 414
see also timing:fill period

<fill/> tag in RealPix, 171
fillDefault attribute, 336
fit attribute, 303

affect on clips, 304
clip scaling recommendations, 306
clip source tag, 296
filling the region, 305
illustration of effects, 305
interaction with registration points, 306
maintaining aspect ratio, 305
maintaining clip size, 305
overriding in clip source tag, 305
with RealPix, 157
with RealText, 113

Flash
advancing scene to scene, 98
audio

export, 101
import, 92, 93

bandwidth targets, 88
clip caching, 98
CPU use, 91
data spikes, 88
event sounds, 92
file size, 90
frame rate, 91
Get URL command

controlling RealPlayer, 96
pop-up windows, 384
sending URL to browser, 96

Go To command, 98
groups, 90

Helix Server requirements, 88
HTTP GET and POST commands, 100
key frames, 90
linear vs. non-linear, 87
Load Movie command

restrictions on, 98
SMIL in place of, 99
timeline behavior with, 99

mouse event trapping, 101
overview, 87
pausing

Flash clip, 96
RealPlayer, 97

Play command, 96
Player file export, 101
pop-up windows

examples, 386
links for, 384

Ram file with, 102
RealAudio issues

bandwidth division, 93
codec tips, 95
for 28.8 Kbps modems, 94
for 56 Kbps modems, 94

RealPlayer requirements, 88
secure transactions, 100
seeking

through presentation, 97
time format for, 97
to Flash frame, 96

SMIL with, 102
starting

Flash clip, 96
RealPlayer, 97

stopping
Flash clip, 96
RealPlayer, 97

stream synchronization, 93
symbols, 90
timeline control, 96
tuning, 88
tweening, 92
Web server delivery, 528

focusInEvent value, 351
focusOutEvent value, 351
 tag in RealText, 124
617

RealNetworks Production Guide
fontBackgroundColor attribute, 232
fontColor attribute, 232
fontFace attribute, 232
fontPtSize attribute, 233
fontSize attribute, 233
fontStyle attribute, 233
fontWeight attribute, 233
frame rates

Flash, 91
RealVideo, 75
video capture, 83

from attribute, 428
full-screen mode

overview, 34
full-screen playback, 517

G GIF, see images
graphics, see images
group tags, 247
groups

begin and end times, 317
durations, 321
relationship to timing, 313
see also exclusive groups
see also parallel groups
see also sequences

.gz extension, 527
GZIP encoding, 526

H hAlign attribute, 234
<head/> tag in RealPix, 156
height attribute

<region/> tag, 283
<root-layout/> tag, 278
<topLayout> tag, 279
animating, 425, 427
clip source tag, 296
related info pane, 376

Helix Server
administration guide, 13
administrator, 27
advanced features, 28
bandwidth constraints on, 28
stream maximum, 28

stream thinning, 51
through ISPs, 28

Helix Server SDK, 13
higher attribute, 265
horzRepeat attribute, 411
hot spots, see hyperlinks
<hr> tag in RealText, 134
href attribute, 369
HTML Help version of this guide, 12
HTML+Javascript version of this guide, 11
HTTP

compared to RTSP, 507
in presentation links, 507
in SMIL file, 216
see also Web server

hyperlinks
<a> tag, 362
activation methods, 361
actuate attribute, 371
advanced SMIL timing, 362
alternate text, 372
animating, 428
<area/> tag, 362
automatic launching, 371
basic properties, 369
begin attribute, 363
coords attribute, 364
destinationLevel attribute, 384
end attribute, 363
external attribute, 374
fill period activity, 336
groups and, 361
hot spots

circular, 365
cropping, 368
image map programs, 368
mixing pixels with percentages, 367
overlapping, 363, 368
percentage decimal values, 367
polygonal, 366
rectangular, 364
sample coordinates, 368
scaling, 367
sizing
tips, 367
618

 Index
href attribute, 369
key activation, 370

case-sensitivity, 370
indicating keys, 371
long description, 370
overlapping links, 371
usable keys, 370

long description, 362
media playback state

bandwidth issues, 378
controlling, 378

nesting, 361
nohref attribute, 370
overlapping, 361
RealPix links, 161
RealText links, 135
recommendations, 359
regions and, 361
scaling in animated regions, 426
sendTo attribute, 375
shape attribute, 364
sound level adjustments, 384
sourceLevel attribute, 384
SourcePlaystate attribute, 378
streaming media

linking from Flash, 384
linking from RealPix, 384
linking from RealText, 384
media playback state, 379
named media windows, 381
new media windows, 380
replacing a clip, 379
SMIL id link, 382
SMIL regions, 381
timeline offsets, 383

tabbing order, 372
target attribute, 377, 381
timed links, 363
URLs, 369
Web page

browser pop-up location, 378
default browser, 375
frame targets, 377
HTML anchors, 378
media browser pane, 375
named windows, 377

opening on a mouse click, 389
opening while a clip plays, 388
related info pane, 375

see also related info pane
zoomlevel attribute, 386
see also clip source tags

I <i> tag in RealText, 134
id attributes

case-sensitivity, 201
clip source tags, 208
first characters, 201
length, 201
spaces in, 201
uniqueness, 200

<image/> tag in RealPix, 163
images

caching, 217
durations, 321, 335
GIF or PNG transparency override, 225
in SMIL, 42
JPEGTRAN utility, 149
reliable transmission, 210
slow streaming example, 209
streaming speed, 208
supported formats, 42
see also RealPix

<imfl> tag in RealPix, 150
 tag, 207
inBoundsEvent value, 348
inline switching, 443
inline text

bolding, 233
carriage returns, 228
character set, 230
clip duration, 229
data format, 227
escape codes, 228
font

colors, 232
face, 232
size, 233

italicizing, 233
line length, 229
region fit, 229
619

RealNetworks Production Guide
scroll bars, 229
SMIL tag for, 227
tabs, 234
text

alignment, 234
truncation, 229

transparent background, 233
uses, 227, 229
word wrap, 234

iris wipes, 399
ISDN bandwidth targets, 46
ISPs and Helix Server, 28

J Javascript
overview, 38
scripting guide, 13

JPEG, see images
JPEGTRAN utility, 149

K keystroke activation
for clip timing, 351
for hyperlinks, 370

L LAN bandwidth use
lowering, 47
maximum, 46

language choices
codes, 603
setting, 446

laying out presentations
embedded playback, 502
with HTML, 503
with SMIL

in RealPlayer, 269
in Web page, 502

see also regions, 281
layout examples, 306
left attribute

<region/> tag, 283
<regPoint/> tag, 300
animating, 425, 427
clip source tag, 296

letterbox videos, 307
 tag in RealText, 134

links
Ram file

to Helix Server, 509
to local files, 509
to Web server, 509

Web page
to Web Server, 506

see also hyperlinks
local files, 29
logos, 530
long description, 244
longdesc attribute, 244
lower attribute, 266

M manuals, where to find, 13
matrix wipes, 404
max attribute, 322
media browser pane

Now Playing list, 36
opening with HTML page hyperlink, 38
overview, 36
secondary windows, 36
supported technologies, 533
target name in hyperlinks, 38
URL parameters, 515

media commerce suite, 534
media playback pane

overview, 31
sizing, 31
supported content, 31
with related info pane, 32

mediaOpacity attribute
animating, 427
using, 221

mediaRepeat attribute, 327
mediaSize attribute, 473
mediaTime attribute, 474
metafile, see Ram file
MIME types for Web servers, 526
min attribute, 322
mode parameter in Ram file, 517
modem bandwidth targets, 46
monitor size switching, 453
620

 Index
N namespaces
background on, 202
declaring but not using, 204
SMIL 1.0 compatibility, 202
SMIL 2.0

customizations, 202
language profile, 196

support for in media players, 204
Netscape Navigator 6

missing plug-in search, 486
sample file link problem, 4

Netscape plug-in, see embedded playback
network connection speeds, 46
nohref attribute, 370
normal play time format

RealPix, 157
RealText, 115
SMIL, 316

Now Playing list, 36

O OBJECT tag, see embedded playback
 tag in RealText, 133
open attribute, 279
OpenDML, 84
operating system switching, 452
outOfBoundsEvent value, 348
overdubbing preference, 447

P <p> tag in RealText, 132
<par> tag, 251
parallel groups

animations within, 421
authoring information, 252
bandwidth issues, 252
begin and end times, 317
defining, 251
delays through slow image streaming, 252
durations, 321
fill period

clip fills, 332
group default, 336
group fills, 334
group inheritance, 337
transitions, 415

independent timelines, 253
normal end point, 252
region IDs for clips, 251
switching, 445
synchronizing clips

default synchronization values, 257
inheriting, 257

letting clips slip, 254
locking clip, 254
overview, 252
tolerance values, 259

defaults, 259
synchronizing groups, 255

nested group interactions, 258
with sequences, 248
see also timing

password authentication, 28
pauseDisplay attribute, 266
pay-per-view, 28
PDF version of this guide, 12
peers attribute, 264
planning a presentation, 27
plug-ins

see embedded playback
see RealPlayer

PNG, see images
pop-up windows

see regions:secondary media windows
<pos/> tag in RealText, 122
<pre> tag in RealText, 133
<prefetch/> tag, 470
prefetching

bandwidth, 471
bits per second, 471
percentage of available, 472

bandwidth attribute, 471
CHTTP, 475
clipBegin attribute, 475
dangers, 470
data download size

bytes, 473
playing time, 474
recommended maximum, 473

effect on local playback, 469
examples, 476
621

RealNetworks Production Guide
mediaSize attribute, 473
mediaTime attribute, 474
overview, 469
RealAudio and RealVideo, 474
RealText, 475
SureStream, 474
synchronizing with a group, 470
testing, 476
timing attributes, 470
URLs, 470

base URL, 475
dynamic, 475

when to prefetch, 474
preroll, 46
presentation information overview, 237
priority classes, 263

paused clip display, 266
<priorityClass> tag, 263
protocols

CHTTP, 217
RTSP, 507

push wipes, 407

Q QuickTime
SMIL 2.0, 195

R .ram extension, 522
Ram file

clip playback size, 517
clipinfo parameter, 520
comments, 510
creating manually, 508
line breaks, 509
linking

to Helix Server, 509
to local files, 509
to Web server, 509

overview, 37
parameter syntax, 513
RealPlayer start mode, 517
related info pane URL, 514
replacing with Ramgen, 522
see also Ramgen
within a SMIL file, 211

Ramgen

options
altplay, 525
combining, 525
embed, 524

using, 522
readIndex attribute, 245
RealAudio

audio quality and bandwidth, 59
bandwidth characteristics, 60
codecs

discrete multichannel, 64
lossless audio, 65
lossy nature, 59
mono music, 62
sampling rates, 61
stereo music, 63
stereo surround, 64
voice, 62

converting to other formats, 69
encoded information, 237
Flash

audio export, 101
soundtrack, 92

prefetching data, 474
RealVideo soundtracks, 74
sound quality, 59
streaming rates

standard, 60
streaming steps, 65
Web server playback, 527
with other clips, 61
see also audio

RealFlash, see Flash
RealPix

absolute URLs, 164
animated GIF control, 173
aspect ratios

all images, 161
specific images, 168

background color, 160
backwards compatibility, 146
bandwidth management, 152
broadcasting, 151
color fill, 171
copyright protection, 147
crossfading images, 170
622

 Index
destination rectangle definition, 178
duration

presentation, 158
specific effects, 166

examples
playable clips, 145
step-by-step walkthrough, 182

fades
from color, 169
to color, 170

frame rate maximum
all effects, 162
specific images, 168

header, 156
image

caching, 147
cropping, 179
display size, 157
distortion, 161
file size attribute, 164
formats, 148
handles, 163
mime type attribute, 165
paths, 164
placement, 177
resizing, 177
selection, 167
shrinking, 180
streaming times, 154

JPEGTRAN utility, 149
overview, 145
panning across an image, 176
pop-up windows

links for, 384
preroll

calculating, 152
lengthening, 160
lowering, 155
masking, 155

server stream requirements, 146
SMIL transition effects comparison, 147
source rectangle definition, 178
start time, 166
streaming bit rate, 159
syntax

rules, 151

structure, 150
time format, 157
timeline

creation, 166
management, 150
troubleshooting, 158

title, author, and copyright, 159
transparency, 149
view changes, 174
Web page links

all images, 161
specific images, 167

Web server delivery, 164, 528
width and height, 157
wipe effects

creating, 172
direction of wipe, 173
push and slide effects, 173

zooming in or out, 175
RealPlayer

autoupdate, 43
backward compatibility, 44
clip compatibility, 43
copyright protection

with Helix Server, 44
with Web server, 527

doubling clip size, 517
download logo, 530
embedding in Web page

see embedded playback
full-screen playback, 517
Javascript guide, 13
language choices

codes, 603
setting, 446

plug-in download, 43
RealVideo codec support, 77, 78
SDK, 13
SMIL source view, 204
theater mode, 517
toolbar mode, 517
VBScript guide, 13
version testing, 455

RealProducer
overview, 40
SDK, 13
623

RealNetworks Production Guide
RealText
accented languages, 125
background color, 113
bandwidth characteristics, 109
bolding text, 134
broadcasting, 110
captions, 450

examples, 462
centering text, 133
character sets

big5, 126
default, 125
gb2312, 126
iso-2022-kr, 126

RealText version for, 117
iso-8859-1, 125
mac-roman, 126

coded characters, 138
RealText version for, 116

specifying, 124
us-ascii, 125
x-sjis, 126

Chinese character set, 126
coded characters, 137

mac-roman character set, 138
colors

hexadecimal values, 131
text, 130
text background, 130
window background, 130

comments, 109
comparison to inline text and plain text,

108
crawl rate, 117
description, 42
duration

in SMIL presentation, 115
of clip, 114
troubleshooting, 115

erasing text, 122
examples, 139

generic window, 139
scrollingnews window, 141
teleprompter window, 142
tickertape window, 140

extra spaces, 119

features, 107
file

extension, 107
names, 109
structure, 108

fonts
Asian languages, 129
colors, 130
English and European languages, 127
text size, 129

freezing text, 121
guaranteed text delivery, 123
horizontal positioning, 122
horizontal rules, 134
horizontal text movement, 117
hyperlinks

color, 117
commands, 137
HTML page, 135
mail, 135
streaming presentation, 135
underlining, 117

italicizing text, 134
Kanji character set, 126
Korean character set, 126
language support, 108
line breaks, 132
lists, 133
looping text, 118
Macintosh text entry, 126
overview, 107
paragraph tags, 132
pop-up windows

examples, 386
links for, 384

prefetching, 475
preformatted text, 133
RealPlayer command links

pausing, 137
playing, 137
seeking, 137

scroll rate, 117
SMIL

combining with other clips, 110
fit attribute, 113

striking through text, 134
624

 Index
subtitles
erasing each line, 122

syntax rules, 109
text size, 129
timing commands

begin, 120
end, 121
with scrolling or crawling text, 121

transparency
text backgrounds, 131
window background, 113, 221

underlining text, 134
version numbers, 116
vertical positioning, 122
vertical text movement, 117
Web server delivery, 528
window size, 113
window types

default attribute values, 112
generic, 112

example, 139
marquee, 112
scrollingnews, 112

example, 141
teleprompter, 112

example, 142
tickertape, 112

colors, 123
example, 140
text positioning, 123

word wrap, 118
RealVideo

artifacts
causes of, 76

bandwidth characteristics, 74
clip dimensions, 84

desktop media, 84
codecs

lossy nature, 75
RealVideo 10, 77
RealVideo 8, 78
RealVideo 9, 78

compressed input, 82
converting to other formats, 80
dimensions

different sizes for different bit rates, 85

portable devices, 85
recommended sizes, 82
switching between, 459

encoded information, 237
frame rates

factors that affect, 76
overview, 75
variable nature, 76

prefetching data, 474
production steps, 78
quality guide, 82
soundtrack

RealAudio for, 74
streaming rates

standard, 74
visual clarity

factors that affect, 77
overview, 76

see also video
rebuffering, 46
<ref/> tag, 207
regAlign attribute, 298
region attribute in clip source tags, 289
regionName attribute

animating, 425
defining, 282

regions
assigning to clips, 289
audio clips, 289
audio volume control, 294
background colors, 292

changing in clip tag, 293
inheriting, 292
transparency

partial, 292
until clip plays, 292

bottom attribute, 283
clip scaling, 303
considerations for creating, 276
cropped at window boundaries, 289
defining, 281
examples

centering a video, 306
four offsets defined, 285
letterbox clip, 307
625

RealNetworks Production Guide
one offset defined, 287
overlapping regions, 288, 290
side-by-side clips, 308
size and two offsets defined, 286
two offsets defined, 287
width and height defined, 284

fit attribute, 303
height attribute, 283
id attribute, 282
layout tips, 274
left attribute, 283
multiple region playback, 309
multiple regions for one clip, 282
name attribute, 282
overlapping, 290
overview, 269, 270
percentage values, 284
positions, 283
resizing control, 281
reusing, 290
right attribute, 283
root-layout

defining, 278
overview, 269
sizing

considerations, 275
double-screen mode, 275
example, 275
full-screen mode, 275
RealPlayer controls, 275

secondary media windows, 271
close attribute, 279
considerations for using, 275
defining, 279
example, 309
full-screen mode, 280
hyperlinked window comparison, 272
open attribute, 279
pop-up location, 280
viewer interaction, 280

sizes
pixels and percentages, 283

decimal percentages, 289
mixing, 289
resize behavior, 289

setting, 283

soundLevel attribute, 294
stacking order, 290
subregions

attribute inheritance, 295
background colors, 295
considerations for creating, 276
defining, 294
nesting, 295
overview, 270
registration point comparison, 277
single-use, 296
z-index attribute, 295

tag summary, 277
top attribute, 283
transparency, 292
width attribute, 283
z-index attribute, 290

registration points
alignment values, 298
clip source tags, 298
common values

in clip source tags, 299
in <regPoint/> tags, 301

considerations for creating, 276
default positioning, 303
defining in layout, 300
fit attribute interaction, 303
ID values, 302
methods of creating, 297
misalignment problems, 299, 303
overview, 273
pixels and percentages

defining, 300
mixing, 303
recommendations, 303

positioning, 300
relationship to regions, 302
reusing in clips, 303
subregion comparison, 277

regPoint attribute, 298, 301
<regPoint/> tag, 300

see also registration points
related info pane

background color, 377
content caching, 35
defining, 375
626

 Index
frames, 35
linking from browser pane, 377
linking to browser pane, 375
opening at the presentation start, 376
overview, 34
recommended use, 377
scroll bars, 34
sizing, 376

browser pane width override, 35
defaults, 34
media pane height override, 35
overview, 34
persistence, 35
recommendations, 377

specifying in Ram file
display time, 515
height and width, 514
media background color, 515
URL, 514

supported technologies, 533
URL parameters, 514
with media playback pane, 32

relative links
in Ram file, 508
in SMIL, 215

reliable transmission, 210
repeat(n) value, 346
repeatCount attribute, 325
repeatDur attribute, 325
repeatEvent value, 346
repeating clips, see timing:repeating clips
<required> tag in RealText, 123
resizeBehavior attribute, 281
restart attribute, 354
restartDefault attribute, 355
right attribute, 283

<region/> tag, 283
<regPoint/> tag, 300
animating, 425, 427
clip source tag, 296

rn: prefix, 201
rollover events, 348
<root-layout/> tag, 278

see also regions

rpcontextparams parameter in Ram file, 514
rpcontexttime parameter in Ram file, 515
.rpm extension, 522
rpurl parameter in Ram file, 515
rpurlparams parameter in Ram file, 515
rpurltarget parameter in Ram file, 515
rpvideofillcolor parameter in Ram file, 515
RTSP

compared to HTTP, 507
in presentation links, 507
in SMIL file, 216
overview, 507
port number, 216

S <s> tag in RealText, 134
sample files, 11
sampling rates, 61
scaling clips in regions, 303
screensize parameter in Ram file, 517
scroll bars in SMIL regions, 304
secondary media windows, see regions:sec-

ondary media windows
secure transactions with Flash, 100
sendTo attribute

namespace declaration, 375
with <a> tags, 375

<seq> tag, 249
sequences

animations within, 421
authoring information, 250
begin and end times, 317
defining, 249
durations, 321
fill period

clip fills, 331
group default, 336
group fills, 334
group inheritance, 337
transitions, 414

Next Clip command, 250
seeking through, 250
single presentation vs. multiple clips, 250
switching, 445
with parallel groups, 248
627

RealNetworks Production Guide
<set/> tag
compared to <animate/>, 420
using, 438

shape attribute, 364
shielded cables, 68
Shockwave Flash, see Flash
show attribute, 379
showvideocontrolsoverlay parameter in

Ram file, 517
slide wipes, 407
slideshows, see RealPix
SMIL 1.0

RealPlayer support, 191
SMIL 2.0 feature inclusion, 456
updating to SMIL 2.0, 205

SMIL 2.0
advantages of, 190
attribute changes from SMIL 1.0, 205
attribute format, 198
bandwidth characteristics, 48
binary tags, 199
body section, 196
camel case values, 198
case-sensitivity, 198
closing tag, 196
coded characters, 239
comments, 200
customized attributes, 201
extensions, 201
functional changes from SMIL 1.0, 204
general rules, 195
header, 196

coded characters, 239
hyphenated attributes, 198
id attributes, 200
indentation, 200
language codes, 603
layout, see regions
links, see hyperlinks
major features, 190
media player interoperability, 194
modules, 191
namespace, 196
overview, 189
prefixes, 201

presentation information, 242
profiles, 193
proprietary datatypes with, 194
quotation marks for values, 198
RealPlayer compliance, 193
slideshows, 146
SMIL 1.0 compatibility, 456
.smil extension, 196
SMIL file as a clip, 212
source file viewing, 204
specification, 189
syntax errors, 199
tag format, 198
text display, 42
timing, see timing
title, author, copyright, 242
unary tags, 199
viewing SMIL source, 204
with Web server playback, 528
with Windows Media, 195

SMIL animation
accumulate attribute, 434
additive attribute, 434
attributeName attribute, 424
audio levels, 426
begin times, 422
by attribute, 429
calcMode attribute, 431
clip stacking order, 426
clips, 427
colors, 436
discrete values, 431
durations, 422
examples, 419
flowing from point to point, 432
freezing, 422
from attribute, 428
hyperlinks

changing coords values, 428
scaling in animated regions, 426

in clip tags, 421
in parallel groups, 421
in sequences, 421
incremental, 434
jumping from point to point, 431
linear values, 432
628

 Index
motion, 437
multiple animation points, 430
overview, 419
paced values, 432
regions, 425
repeating, 422
repeating and growing, 434
root-layout, 424
selecting attribute to animate, 424
setting values instantly, 438
simultaneous, 423
start and stop values, 428
tags, 420
targetElement attribute, 424
time manipulations, 439
timing attributes, 422
to attribute, 428
transparency, 427
values attribute, 430

.smil extension, 196
SMPTE code, 396
software development kits (SDKs), 13
soundLevel attribute

animating, 426
using, 294

sourceLevel attribute, 384
sourcePlaystate attribute, 378, 379
special effects

see SMIL animation
see transition effects

start parameter in Ram file, 517
stream thinning, 51
streaming

speeds for network connections, 46
versus downloading, 507
Web server, 506

subregions, see regions
subtitles

compared to captions, 462
example, 460
preference for, 447
through RealText, 447
transparent background, 113

SureStream
backward compatibility, 44

overview, 49
RealAudio codecs, 61
switching, 449

SVG animation, 41
s-video, 82
<switch> tag, 441
switching

audio descriptions, 450
bandwidth, 448
captions, 450

example, 462
color depth, 454
component testing, 455
CPU type, 451
default option

adding, 442
filler clip, 445
when not to use, 445

examples
captions, 462
different video dimensions, 459
multiple attributes, 458

group switching, 445
hyperlink inclusion, 445
inline, 443
language choices

codes, 446
examples, 460
explanation, 446

layouts, 445
monitor size, 453
multiple attributes

example, 458
nested, 445

example, 459
operating system, 452
overview, 50, 441
SMIL file switching, 467
subtitles or overdubbing, 447
test attributes

list of, 444
multiple attributes, 445

version testing, 455
versus interactive choices, 441

syncBehavior attribute, 253
629

RealNetworks Production Guide
syncBehaviorDefault attribute, 257
synchronizing clips in parallel groups, 252
syncTolerance attribute, 259
syncToleranceDefault attribute, 259
systemAudioDesc attribute, 450
systemBitrate attribute, 448
systemCaptions attribute, 450
systemComponent attribute, 455
systemCPU attribute, 451
systemLanguage attribute, 446
systemOperating system attribute, 452
systemOverdubOrSubtitle attribute, 447
systemRequired attribute, 455
system-required attribute, 456
systemScreenDepth attribute, 454
systemScreenSize attribute, 453

T tabindex attribute, 372
target attribute, 377, 381
target name for media browser pane, 38
targetElement attribute, 424
technical support, 13
testing presentations, 529
text, 42
text clips

bolding, 233
character set, 230
durations, 226
escape codes, 226
font

colors, 232
face, 232
size, 233

italicizing, 233
line length, 226
returns, tabs, and spaces, 226
SMIL tag for, 226
tabs, 234
text

alignment, 234
transparent background, 233
word wrap, 234
see also inline text
see also RealText

text streaming, see RealText
<text/> tag, 208
<textstream/> tag, 208
theater mode for RealPlayer, 517
time manipulations, 439
<time/> tag in RealText, 120
timing

advanced, 339
element repeat, 346
element start or stop, 344
interactive events, 340
keyboard events, 351
media markers, 354
min and max values, 322
mouse event, 348
negative offset values, 343
positive offset values, 341
scheduled events, 340
secondary window events, 353
syntax, 339
wallclock timing, 354

animated GIF modification, 327
basic, 313
begin attribute, 317
clipBegin attribute, 318
clipEnd attribute, 318
delaying clip playback, 317
dur attribute, 319

compared to end, 319
durations, 319

groups, 321
images, 321
indefinite, 320
normal clip length, 320

end attribute, 317
compared to dur, 319

exclusive groups, 261
begin and end times, 317
durations, 321
group endpoint

last clip, 322
fill attribute, 329
fill period, 329

automatic fill, 330
default fills, 336
630

 Index
exclusive group clips, 332
groups, 334
indefinitely visible clip, 332
parallel group clips, 332
sequential clips, 331
SMIL 1.0 and 2.0 differences, 205
summary, 333

keyboard events
case-sensitivity, 352
indicating keys, 352
long description, 352
usable keys, 352

mediaRepeat attribute, 327
multiple time values, 344
overview, 313
parallel groups

begin and end times, 317
durations, 321
group endpoint

first clip, 323
last clip, 322
specific clip, 323

partial clip play, 329
relationship to groups, 313
repeatCount attribute, 325
repeatDur attribute, 325
repeating clips

bandwidth management, 327
indefinite number of times, 326
repeating cycle length, 326
server streams used, 328
specific amount of time, 325
specific number of times, 325
total playing time, 326

restarting elements, 354
group defaults, 355

sequences
begin and end times, 317
durations, 321

tenths of seconds display, 315
values

normal play time format, 316
shorthand, 315

Web server delivery issues, 529
timing a presentation

internal timelines, 52

timeline management, 54
timeline synchronization, 51
variable timelines, 52
with multiple clips, 52

title attribute
in Ram file, 519
in RealPix, 159
in SMIL, 240

<tl> tag in RealText, 123
to attribute, 428
toolbar mode for RealPlayer, 517
top attribute

<region/> tag, 283
<regPoint/> tag, 300
animating, 426, 427
clip source tag, 296

<topLayout/> tag, 279
see also regions

topLayoutCloseEvent value, 353
topLayoutOpenEvent value, 353
transIn attribute, 413
transition effects

animation comparison, 394
assigning to clips, 413
audio impact, 394
borderColor attribute, 412
borders

blends, 412
colors, 412
pixel width, 412

borderWidth attribute, 412
clock wipes, 401
direction attribute, 409
dur attribute, 409
duration

changing, 409
default, 394

edge wipes, 396
endProgress attribute, 410
examples

color fade, 416
crossfade, 417

fadeColor attribute, 412
fades, 407

colors, 412
631

RealNetworks Production Guide
fill attribute
parallel groups, 415
sequences, 414

horzRepeat attribute, 411
id attribute, 396
instantaneous effects, 411
iris wipes, 399
layout considerations, 394
matrix wipes, 404
multiple clips, 395
overview, 393
partial effects

defining, 410
fill attribute, 411

push wipes, 407
repeating, 411
slide wipes, 407
SMPTE code, 396
startProgress attribute, 410
subtype attribute, 396
tag summary, 395
timeline impact, 394
transIn attribute, 413
transOut attribute, 413
type attribute, 396
vertRepeat attribute, 411

<transition/> tag, 395
see also transition effects

transOut attribute, 413
transparency

clips
color for transparency, 225
for a specific opaque color, 222
for all opaque colors, 221
for background color, 221
supported clip types, 293

region backgrounds
full, 292
partial, 292

<tu> tag in RealText, 123

U <u> tag in RealText, 134
 tag in RealText, 134
URL events encoded in clips, 37

V vAlign attribute, 234
values attribute, 430
VBScript with RealPlayer, 13
vertRepeat attribute, 411
VHS format, 80
video

see also RealVideo
capture

cards, 40
disk space, 83
file size limit, 84
formats, 82
frame rates, 83
requirements, 83
screen size, 82

editing programs, 40
lighting, 81
minimizing movement, 81
motion resolution, 81
production tools, 40
recording tips, 80
source formats, 80
staging shots, 81
streaming steps, 78
s-video, 82
24-bit depth, 82

Video for Windows, 82
<video/> tag, 208
<viewchange/> tag in RealPix, 174
visual quality of RealVideo, 76
visualizations, 33
volume

control for embedded playback, 494
fading through SMIL animations, 426
live broadcasts, 68
SMIL region control, 307

W wallclocks for broadcasts, 354
Web page playback, 481
Web pages

see also media browser pane
see also related info pane

Web server
GZIP encoding, 526
632

 Index
MIME type configuration, 526
playback

instructions, 506
limitations, 527
unsecure clips, 527

wide screen video display, 307
width attribute

<region/> tag, 283
<root-layout/> tag, 278
<topLayout> tag, 279
animating, 425, 426, 428
clip source tag, 296
related info pane, 376

<window> tag in RealText, 108
Windows Media and SMIL, 195
<wipe/> tag in RealPix, 172
wipes, see transition effects
wordWrap attribute, 234
World Wide Web Consortium (W3C), 189

X XML namespace, 196
xmlns attribute, 196

Z z-index attribute, 290
animating, 426, 428
clip source tag, 296
default value, 291
duplicate values, 291
negative integers, 291
recommended values, 291
<root-layout/> tag, 291
subregions, 295

zoomlevel attribute, 386
633

RealNetworks Production Guide
634

	Documentation Release Note
	Latest Additions
	July 2004
	September 2002
	July 2002

	Known Issues
	Undocumented Features
	Netscape Navigator 6 Issues

	Introduction
	What This Guide Covers
	How this Guide Is Organized
	How to Download This Guide to Your Computer
	Conventions Used in this Guide
	Additional Resources
	Technical Support

	New Features
	RealPlayer 10 Introduced
	SMIL 2.0 Support
	New Clip Tag Attributes
	Expanded Grouping Possibilities
	Enhanced Layout Choices
	More Timing Possibilities
	New Linking Attributes
	Clip Transition Effects
	SMIL Animations
	Powerful Content Control Capabilities
	Additions and Deletions to this Guide

	Presentation Planning
	Step 1: Decide How to Deliver Clips
	Helix Server Streaming
	Using Helix Server through an Internet Service Provider

	Web Server Downloading
	Local Playback

	Step 2: Learn the RealPlayer 10 Interface
	The Three-Pane Environment
	The Media Playback Pane
	Media Playback Pane Sizing

	The Related Info Pane
	Related Info Pane Sizing
	HTML Page Caching

	The Media Browser Pane
	‘Now Playing’ List
	Secondary Browsing Windows

	Using Media Clips to Open HTML Pages
	Appending HTML URLs to Clip URLs in a Ram File
	Embedding HTML URLs Into a Clip
	Using SMIL to Coordinate Clips and HTML Pages

	Controlling a Presentation Through HTML Pages
	Linking One HTML Pane to the Other
	Launching a Clip with an HTML Page Link
	Using Javascript and VBScript Methods

	Step 3: Choose Clip Types and Gather Tools
	Audio and Video
	Audio and Video Production Tools
	RealAudio and RealVideo Encoding Tools

	SMIL
	Animation
	Images
	Images in SMIL Presentations
	RealPix Markup

	Text
	Autoupdate Feature
	Compatibility with Earlier Versions of RealPlayer
	Protection of Copyrighted Content

	Step 4: Develop a Bandwidth Strategy
	Buffering
	Initial Buffering (Preroll)
	Rebuffering

	Audience Bandwidth Targets
	Multiclip Presentations
	Streaming at Less than the Maximum Speed

	Clip Bandwidth Characteristics
	RealAudio and RealVideo
	Flash
	RealText and SMIL
	RealPix (Slideshows)
	Images in SMIL Presentations

	Reaching Multiple Audiences
	SureStream RealAudio and RealVideo
	Switching Between Multiple Clips with SMIL

	Step 5: Organize the Presentation Timeline
	Timeline Considerations
	Clips with Internal Timelines
	Clips with Variable Timelines
	SMIL Timing Commands

	Timelines for Multiclip Presentations
	Timeline Management

	Step 6: Get Started With Production

	Audio Production
	Understanding RealAudio
	Bandwidth and Audio Quality
	RealAudio Bandwidth Characteristics
	RealAudio Codecs
	Voice Codecs
	Mono Music Codecs
	Stereo Music Codecs
	Stereo Surround Codecs
	Discrete Multichannel Audio Codecs
	Lossless Audio

	Steps for Streaming Audio

	Capturing Audio
	Source Media
	Recording Equipment
	Shielded Cables
	Input Levels
	Volume Levels for Live Broadcasts
	Sampling Rates

	Optimizing Audio
	DC Offset
	Normalization
	Dynamics Compression
	Equalization

	Video Production
	Understanding RealVideo
	RealVideo Bandwidth Characteristics
	RealVideo Frame Rates
	RealVideo Clarity
	RealVideo Codecs
	RealVideo 10 Codec
	RealVideo 9 Codec
	RealVideo 8 Codec

	Steps for Streaming Video

	Recording Video
	Source Media Quality
	Video Staging
	Scene Changes and Movement
	Colors and Lighting
	Video Output
	Color Depth

	Digitizing Video
	Digitized Video Formats
	Video Capture Dimensions
	Full-Screen Capture

	Video Capture Frame Rates
	Computer Speed and Disk Space
	Disk Space Requirements for Video Capture
	Video Source File Size Limit

	Video Encoding Dimensions
	Desktop Video Dimension Recommendations
	Mobile Device Video Dimension Recommendations

	High-Bandwidth and Low-Bandwidth Streaming Audiences

	Flash Animation
	Understanding Flash
	Software Versions for Flash
	Flash in the Three-Pane Environment
	Flash Bandwidth Characteristics
	Flash Clip Size
	Flash CPU Use

	Adding Audio to Flash
	Adding Event Sounds
	Using a Continuous Soundtrack
	Dividing Bandwidth Between Flash and RealAudio
	Targeting 28.8 Kbps Modems
	Targeting 56 Kbps Modems
	Targeting Both 28.8 and 56 Kbps Modems

	Tips for Choosing RealAudio Codecs

	Using Interactive Flash Commands
	Flash Clip Timeline Commands
	RealPlayer Commands
	Seeking Into a Presentation
	Playing, Pausing, or Stopping a Presentation
	Popping Up New Media Windows

	Go To Commands
	Load Movie Commands
	Timeline Slider Activity with Multiple Clips
	Using SMIL Instead of Load Movie

	Secure Transactions
	Mouse Events

	Streaming a Flash Clip

	RealText Markup
	Understanding RealText
	RealText Language Support
	Text Alternatives
	Structure of a RealText Clip
	Rules for RealText Markup
	RealText Bandwidth
	RealText in a SMIL Presentation
	RealText Broadcast Application

	Setting RealText Window Attributes
	Specifying the Window Type
	Window Type Default Values

	Setting the Window Size and Color
	Creating a Transparent Window Background
	RealText Window Size and SMIL Region Size

	Setting the Clip Duration
	RealText Durations and SMIL Durations
	Tips for Setting RealText Clip Durations

	Adding a Version Number
	Specifying Hyperlink Appearance
	Controlling Text Flow
	Setting a Scroll Rate or a Crawl Rate
	Wrapping Text to New Lines
	Looping Text
	Ignoring Extra Spaces

	Timing and Positioning Text
	Controlling When Text Appears and Disappears
	Using an End Time
	Tips for Using <time/> Tags

	Clearing Text from the Window
	Positioning Text in a Window
	Aligning Text in a Tickertape Window
	Ensuring Text Delivery

	Specifying Languages, Fonts, and Text Colors
	Specifying the Character Set
	us-ascii
	iso-8859-1
	mac-roman
	x-sjis
	gb2312
	big5
	iso-2022-kr

	Setting the Font
	English and European Language Fonts
	Asian Language Fonts

	Setting the Text Size
	Controlling Text Colors
	Setting Text Letter Colors
	Creating Text Background Colors
	Specifying RealText Color Values
	Using Transparency as a Color

	Controlling Text Layout and Appearance
	Adding Space Between Text Blocks
	<p>...</p>
	

	Centering Text
	Preformatting Text
	Using HTML-Compatible Tags
	...
	...
	...
	<hr/>

	Emphasizing Text
	...
	<i>...</i>
	<s>...</s>
	<u>...</u>

	Creating Links and Issuing Commands
	Creating a Mail Link
	Opening Media or HTML Pages
	Example 1: Opening a Streaming Media URL
	Example 2: Opening an HTML Page
	Example 3: Opening a URL in the Form protocol:path

	Issuing RealPlayer Commands
	Seeking Into a Presentation
	Pausing a Presentation
	Resuming Playback

	Using Coded Characters
	Using Coded Characters with the mac-roman Character Set

	RealText Examples
	Generic Window
	Tickertape Window
	Scrolling News Window
	Teleprompter Window

	RealPix Markup
	Understanding RealPix
	RealPix and SMIL
	RealPix Slideshow Advantages
	SMIL 2.0 Slideshow Advantages

	Image Formats and Features
	JPEGTRAN for JPEG Images
	Image Transparency

	RealPix Timelines
	Structure of a RealPix File
	Rules for RealPix Markup
	RealPix Broadcast Application

	Managing RealPix Bandwidth
	Estimating the Required Bandwidth and Preroll
	Calculating Individual Image Streaming Times
	Lowering RealPix Preroll
	Masking Preroll With Other Clips

	Setting Slideshow Characteristics
	Defining the Presentation Size
	Specifying the Time Format
	Setting the Presentation Duration
	Tips for Setting a RealPix Duration

	Controlling the Streaming Bit Rate
	Defining the Title, Author, and Copyright
	Creating a Background Color
	Setting a Preroll Value
	Adding a Presentation URL
	Handling Image Aspect Ratios
	Setting the Maximum Frames Per Second

	Defining Images
	Creating an Image Handle
	Specifying an Image File Name and Path
	Streaming the Presentation
	Keeping All Files on the Same Server
	Using Absolute, Local URLs

	Indicating the Image Size for Web Servers
	Setting the Mime Type

	Using Common Transition Effects Attributes
	Setting an Effect Start Time
	Specifying an Effect Duration
	Selecting the Image Target
	Creating an Effect URL
	Opening URLs Automatically

	Changing an Image’s Aspect Ratio
	Capping an Effect’s Frame Rate

	Creating RealPix Transition Effects
	Fading In on an Image
	Fading an Image Out to a Color
	Crossfading One Image Into Another
	Painting a Color Fill
	Creating a Wipe Effect
	Setting the Wipe Type
	Choosing the Wipe Direction

	Controlling an Animated GIF Image
	Zooming In, Zooming Out, and Panning
	Zooming In on an Image
	Panning Across an Image

	Controlling Image Size and Placement
	Defining Source and Destination Attributes
	Exhibiting Part of an Image in the Entire Display Area
	Showing All of an Image in Part of the Display Area
	Filling Part of the Display Area with Part of the Source Image

	RealPix Example
	Step 1: Determine the Bandwidth Use
	Choose the RealAudio Streaming Rate
	Determine the Image Bandwidth Requirements

	Step 2: Write the RealPix File
	Step 3: Write the SMIL File

	SMIL Basics
	Understanding SMIL
	Advantages of Using SMIL
	SMIL 1.0 and SMIL 2.0
	SMIL 2.0 Modules
	SMIL 2.0 Profiles
	Interoperability Between SMIL-Based Players
	SMIL Version
	SMIL Profile
	Clip Support
	Media Player Launch Methods

	Creating a SMIL File
	The SMIL 2.0 Tag and Namespace
	Header and Body Sections
	Tags, Attributes, and Values
	Binary and Unary Tags
	Changing a Unary Tag to a Binary Tag

	SMIL Recommendations
	SMIL Tag ID Values

	Using Customized SMIL Attributes
	RealNetworks Extensions Namespace
	System Component Namespace
	A Closer Look at Namespaces
	Why does SMIL use namespaces?
	Why are prefixes used?
	Why are prefixes user-definable?

	Tips for Defining Namespaces

	Viewing SMIL Source Markup
	Playback Differences from SMIL 1.0
	Behavioral Changes
	Updating SMIL 1.0 Files to SMIL 2.0

	Clip Source Tags
	Creating Clip Source Tags
	Adding a Clip ID
	Setting a Clip’s Streaming Speed
	Using the bitrate Parameter
	Ensuring Reliable Clip Transmission

	Creating a Brush Object
	Using a Ram File as a Source
	Using a SMIL File as a Source
	Handling Layouts
	Using Timing Attributes

	Writing Clip Source URLs
	Linking to Local Clips
	Creating Relative Links to Other Directories
	Writing Absolute Links

	Creating a Base URL
	Linking to Clips on Helix Server
	Linking to Clips on a Web Server
	Caching Clips on RealPlayer
	Using the CHTTP Caching Protocol
	Controlling the RealPlayer Cache

	Modifying Clip Colors
	Adjusting Clip Transparency and Opacity
	Adding Transparency to All Opaque Colors
	Creating Transparency in a Clip’s Background Color

	Substituting Transparency for a Specific Color
	Selecting a Color to Render Transparent
	Using Partial Transparency
	Expanding the Transparency Range

	Substituting a Color for Transparency

	Adding Text to a SMIL Presentation
	Displaying a Plain Text File
	Tips for Using a Plain Text File

	Writing Inline Text
	Using Inline Text Escape Characters
	Tips for Using Inline Text

	Changing Text Characteristics
	Choosing a Character Set
	Selecting a Font
	Choosing Font Colors
	Setting Font Sizes
	Bolding or Italicizing Text
	Turning off Word Wrap
	Ignoring Tabs
	Aligning Text

	Presentation Information
	Understanding Presentation Information
	Information Encoded in Clips
	Clip Source Tag and Group Information
	SMIL Presentation Information
	Accessibility Information
	RealPlayer Related Info Pane
	Coded Characters

	Adding Clip and Group Information
	Where Title, Author, and Copyright Information Displays
	Using Clips Within Groups

	Defining Information for the SMIL Presentation
	Example of Presentation and Clip Information

	Adding Accessibility Information
	Including an Alternate Clip Description
	Using a Long Description
	Setting the Clip Read Order

	Groups
	Understanding Groups
	Groups Within Groups

	Playing Clips in Sequence
	Creating Sequences Without Sequence Tags
	Tips for Creating Sequences

	Playing Clips in Parallel
	Tips for Creating Parallel Groups

	Synchronizing Playback in Parallel Groups
	Creating an Independent Timeline
	Setting the Synchronization Behavior
	Synchronizing Clips
	Synchronizing Groups

	Specifying Synchronization Behavior Default Values
	Setting Groups to Inherit Synchronization Defaults
	Nested Group Interactions with Synchronization Behaviors

	Loosening the Synchronization for Locked Elements
	Specifying Synchronization Tolerance Default Values
	Tips for Synchronizing Clips

	Creating an Exclusive Group
	Defining Interactive Begin Times
	Using Clip Interruption
	Modifying Clip Interruption Behavior
	Controlling How Peers Interact
	Setting Interactions with Higher Priority Classes
	Setting Interactions with Lower Priority Classes
	Specifying How Paused Clips Display

	Tips for Defining Exclusive Groups and Priority Classes

	Layout
	Understanding Layouts
	Root-Layout Area
	Playback Regions
	Subregions
	Secondary Media Playback Windows
	Secondary Pop-up Windows Versus Hyperlinked Pop-up Windows

	Clip Position and Fit
	Clip Position
	Clip Fit

	Tips for Laying Out Presentations
	How big should I make the root-layout area?
	Should my presentation use secondary media playback windows?
	How many regions should I create?
	Should I define subregions?
	Should I create registration points?
	Can I use subregions instead of registration points to position clips?

	Layout Tag Summary

	Creating Main and Secondary Media Windows
	Defining the Main Media Playback Pane
	Creating Secondary Media Playback Windows
	Controlling When Secondary Media Windows Open and Close
	Tips for Defining Secondary Media Playback Windows

	Controlling Resize Behavior

	Defining Playback Regions
	Setting Region IDs and Names
	Defining Region Sizes and Positions
	Layout Example 1: Region Width and Height
	Layout Example 2: Four Region Offsets
	Layout Example 3: Region Sizes and Two Offsets
	Layout Example 4: Two Offsets
	Layout Example 5: Single Offsets for Two Regions
	Layout Example 6: Overlapping Regions
	Tips for Defining Region Sizes and Offsets

	Assigning Clips to Regions
	Stacking Regions That Overlap
	Tips for Defining z-index Values

	Adding Background Colors
	Setting When Background Colors Appear
	Making a Region Partially Transparent
	Transparency in Regions and Clips
	Changing the Region Color Through a Clip Source Tag

	Controlling Audio Volume in a Region
	Defining Subregions
	Tips for Defining Subregions
	Defining Single-Use Subregions

	Positioning Clips in Regions
	Using Alignment Values
	Defining Registration Points in Clip Source Tags
	Avoiding Problems When Defining Registration Points
	Using Common Registration Point Values in Clip Source Tags

	Creating a Reusable Registration Point
	Positioning the Registration Point
	Assigning a Registration Point to Clips
	Using Common Values in <regPoint/> Tags
	Tips for Defining <regPoint/> Tags

	Fitting Clips to Regions
	fit Attribute Values
	Overriding a Region’s fit Attribute
	Tips for Defining the fit Attribute

	Layout Examples
	Centering a Video on a Background Image
	Displaying a Letterbox Clip
	Turning Down an Audio Clip’s Volume
	Playing Three Clips Side-by-Side
	Placing a Clip in a Secondary Media Playback Window
	Playing the Same Clip in Multiple Regions

	Basic Timing
	Understanding Basic Timing
	Groups Create the Timing Superstructure
	Timing is Relative to Groups
	Timing Attributes Covered in this Chapter

	Specifying Time Values
	Using Shorthand Time Values
	Using the Normal Play Time Format

	Setting Begin and End Times
	Using a Begin Time with a Clip
	Using an End Time with a Clip
	Using Begin and End Times with Groups

	Setting Internal Clip Begin and End Times
	Combining clipBegin and clipEnd with begin and end

	Setting Durations
	Choosing end or dur
	Setting a Duration for the Length of Media Playback
	Using an Indefinite Duration
	Tips for Setting Durations

	Setting Minimum and Maximum Times
	Ending a Group on a Specific Clip
	Stopping a Group After the Last Clip Plays
	Stopping the Group When a Specific Clip Finishes
	Tips for Using the endsync Attribute

	Repeating an Element
	Repeating an Element a Certain Number of Times
	Repeating an Element a Specific Amount of Time
	Specifying the Length of Each Repeating Cycle
	Setting a Total Playback Time
	Looping Playback Indefinitely
	Stopping a Clip’s Encoded Repetitions
	Managing Bandwidth with Repeating Clips
	Leaving Bandwidth Available for Repeating Cycles
	Helix Server Streams Used with Repeating Clips

	Tips for Repeating Elements

	Setting a Fill
	Using an Automatic Fill
	Setting a Fill with Sequential Clips
	Setting a Fill in Parallel Groups
	Setting a Fill in Exclusive Groups
	Displaying a Clip Throughout a Presentation
	Summary of Common Clip fill Values
	Setting a Group Fill
	Tips for Setting a Fill

	Specifying a Default Fill
	Adding a Default Fill to a Group
	Inheriting a Default Fill from a Containing Group

	Advanced Timing
	Understanding Advanced Timing
	Advanced Timing Syntax
	Event Types
	Positive Offset Times
	Interactive Events with Positive Offset Times
	Scheduled Events with Positive Offset Times

	Negative Offset Times
	Simple Negative Offset Times
	Interactive Events with Negative Offset Times
	Scheduled Events with Negative Offset Times

	Multiple Timing Values
	Tips for Specifying Multiple Time Values

	Defining an Element Start or Stop Event
	Sample Values
	Example

	Defining a Repeat Event
	Sample Values
	Example

	Defining a Mouse Event
	Sample Values
	Examples
	Starting a Clip when Another Clip is Clicked
	Changing a Background Color on a Mouseover
	Changing a Clip on a Mouseover

	Defining a Keyboard Event
	Sample Values
	Example
	Tips for Defining Keyboard Events

	Defining a Secondary Window Event
	Sample Values
	Example

	Using Media Markers
	Coordinating Clips to an External Clock
	Controlling Whether an Element Restarts
	Setting a Default Restart Value
	Nested Group Interactions with Restart Values

	Hyperlinks
	Understanding Hyperlinks
	Links to HTML Pages
	Links to Streaming Media
	Linked Pop-Up Windows vs. Secondary Pop-Up Windows
	Hyperlinks vs. Exclusive Groups

	Methods of Activating a Link
	General Tips for Creating Hypertext Tags

	Creating a Simple Link
	Using the <area/> Tag
	Creating a Timed Link
	Defining Hot Spots
	Creating a Rectangular Hot Spot
	Defining a Circular Hot Spot
	Making a Polygonal Hot Spot
	Tips for Defining Hot Spots

	Defining Basic Hyperlink Properties
	Specifying the Link URL
	Leaving Out a URL Reference for Hot Spots
	Opening a Link on a Keystroke
	Tips for Defining Access Keys

	Opening a URL Automatically
	Displaying Alternate Link Text
	Setting a Tab Index for Multiple Links

	Linking to HTML Pages
	Selecting a Browsing Window
	Targeting the Media Browser Pane
	Using the Viewer’s Default Browser

	Opening HTML Pages in the Related Info Pane
	Setting the Related Info Pane Size
	Making Room for the Related Info Pane
	Tips for Using the Related Info Pane

	Targeting a Frame or Named Window
	Controlling the Media Playback State
	Tips for Opening HTML Page Links

	Linking to Streaming Media
	Replacing the Source Presentation
	Opening a New Media Playback Window with SMIL
	Targeting a Specific Window or Region
	Tips for Opening Streaming Media in New Windows

	Linking to a SMIL Fragment
	Linking to a Clip with a Timeline Offset
	Tips for Linking to SMIL Fragments

	Adjusting Audio Volumes in Linked Presentations
	Opening a Media Playback Window with a Clip Link
	Window Names
	Target URL
	Zoom Level
	Examples
	Tips for Opening Media Windows with RealText, ReaPix, or Flash

	Hyperlink Examples
	Opening Web Pages During a Presentation
	Opening Pages on a Mouse Click

	Transition Effects
	Understanding Transition Effects
	Timelines and Transition Effects
	Layouts and Transition Effects
	Animations and Transition Effects
	Audio and Transition Effects
	Multiple Clips with Transition Effects
	Summary of Transition Effects Tags

	Defining Transition Types
	Edge Wipe Transition Effects
	Iris Wipe Transition Effects
	Clock Wipe Transition Effects
	Matrix Wipe Transition Effects
	Fade, Push, and Slide Transition Effects

	Modifying Transition Effects
	Setting a Transition Effect’s Duration
	Reversing a Transition Effect’s Direction
	Using Partial Transition Effects
	Tips for Using Partial Transition Effects

	Repeating Transition Effects Horizontally or Vertically
	Setting a Border Width
	Defining Colors and Border Blends

	Assigning Transition Effects to Clips
	Using Clip Fills with Transition Effects
	Defining a Transition Fill for a Sequence of Clips
	Setting a Fill in Parallel Groups

	Transition Effects Examples
	Fading to a Color Between Clips
	Crossfading Videos

	Animations
	Understanding Animations
	Animation Tags
	Animation Tag Placement
	In a Clip Source Tag
	In a Parallel Group
	In a Sequence

	SMIL Timing with Animations
	Simultaneous Animations

	Creating Basic Animations
	Selecting the Element and Attribute to Animate
	Animating Window Attributes
	Animating Region Attributes
	Animating Clip Attributes
	Animating Hot Spot Attributes

	Defining Simple Animation Values
	Animating an Attribute to a Certain Point
	Animating an Attribute by a Certain Value
	Tips for Defining Simple Animation Values

	Defining a Range of Animation Values
	Tips for Defining a Values List

	Controlling How an Animation Flows
	Jumping from Value to Value
	Moving Linearly from Point to Point
	Flowing at an Even Pace

	Creating Additive and Cumulative Animations
	Adding Animation Values to a Base Value
	Making Animations Repeat and Grow

	Using the Specialized Animation Tags
	Animating Colors
	Creating Horizontal and Vertical Motion
	Setting an Attribute Value

	Manipulating Animation Timing

	Switching
	Understanding Switching
	Creating a Switch Group
	Adding a Default Option to a Switch Group
	Using Inline Switching
	Choosing Inline Switching or a Switch Group

	Available Test Attributes
	Tips for Writing Switch Groups

	Switching Between Language Choices
	Setting Language Codes
	Providing Subtitles or Overdubbing

	Switching Between Bandwidth Choices
	Switching with SureStream Clips

	Enhancing Presentation Accessibility
	Switching Based on the Viewer’s Computer
	Switching for CPU Type
	Switching for Operating System
	Switching for Monitor Size or Color Depth
	Specifying a Monitor Size
	Specifying a Color Depth

	Checking Components and Version Numbers
	Defining Test Attributes in SMIL 2.0
	Combining SMIL 2.0 with SMIL 1.0
	Testing for the Player Version

	Switch Group Examples
	Multiple Test Attributes
	Example 1: Multiple Test Attributes for Each Clip
	Example 2: Nested <switch> Groups

	Different Video Sizes Chosen Automatically
	Subtitles and HTML Pages in Different Languages
	Example 1: RealText Subtitles
	Example 2: Different HTML Pages for Different Languages

	System Captions Using RealText
	Example 1: Transparent RealText Overlay
	Example 2: Caption Region
	Example 3: Media Playback Pane Resized for Captions

	Backward-Compatible SMIL File
	Full SMIL File Switching

	Prefetching
	Understanding Prefetching
	Using the <prefetch/> Tag
	Managing Prefetch Bandwidth
	Specifying Prefetch Bandwidth in Bits Per Second
	Specifying Prefetch Bandwidth as a Percentage

	Controlling Prefetch Data Download Size
	Prefetching a Specific Amount of Data
	Prefetching a Specific Length of a Clip’s Timeline

	Tips for Prefetching Data
	RealAudio and RealVideo Prefetching
	Prefetch URLs
	SMIL Timing with Prefetching
	Prefetch Testing

	Prefetching Examples
	Displaying an Image Until Prefetching Completes
	Prefetching and Caching an Image

	Web Page Embedding
	Understanding Web Page Embedding
	Embedding vs. the Three-Pane Environment
	<EMBED> and <OBJECT> Tags
	Layout Possibilities
	Defining a Layout with SMIL and HTML
	Defining a Layout with HTML Alone

	RealPlayer Controls
	Javascript and VBScript

	Using <EMBED> Tags
	Setting <EMBED> Tag Parameters
	Specifying the Source
	Developing Your Presentation
	Delivering Your Presentation
	Using Helix Server’s Ramgen to Eliminate the Ram File

	Setting the Width and Height
	Turning off the Java Virtual Machine
	Supporting Other Browsers

	Using <OBJECT> Tags
	Setting <OBJECT> Tag Parameters
	Specifying the Source
	Combining <EMBED> with <OBJECT>

	Adding RealPlayer Controls
	Basic Controls
	Individual Controls and Sliders
	Information Panels
	Status Panels
	Linking Multiple Controls
	Tips for Using Consoles
	Multiple Controls Example

	Controlling Image Display
	Setting a Background Color
	Centering a Clip
	Maintaining a Clip’s Aspect Ratio
	Suppressing the RealPlayer Logo

	Setting Automatic Playback
	Starting a Presentation Automatically
	Looping a Presentation Continuously
	Specifying a Number of Loops
	Setting Shuffle Play

	Laying Out SMIL Presentations
	Defining the Layout with SMIL
	Defining the Layout with HTML

	Presentation Delivery
	Understanding Linking and URLs
	The Ram File
	How a Ram File Works
	The Ram File for Embedded Presentations
	The Ramgen Alternative to Ram Files

	The Difference Between RTSP and HTTP
	Which URLs Use Which Protocol

	Directory Paths and URLs

	Launching RealPlayer with a Ram File
	Writing a Basic Ram File
	Adding Comments to a Ram File
	Streaming Different Clips to Different RealPlayers
	Using the Ram File Multiple-Player Syntax
	Tips for Writing Multiple-Player Ram Files

	Examples of Linking a Web Page to Clips
	Linking to a Single Clip
	Linking to an Embedded Clip
	Linking to a SMIL Presentation

	Passing Parameters Through a Ram File
	Opening a URL in an HTML Pane
	Background Color Values
	Examples of Opening HTML Pages
	Tips for Opening HTML URLs

	Controlling How a Presentation Initially Displays
	Examples of Setting a Presentation’s Initial Display
	Tips for Setting the Initial Display

	Overriding Title, Author, and Copyright Information
	Example of Setting Title, Author, and Copyright Information

	Setting Clip Information
	Using Text Escape Characters
	Example of Setting Clip Information

	Using Ramgen for Clips on Helix Server
	Linking Your Web Page to Helix Server Using Ramgen
	Listing Alternative Presentations with Ramgen
	Combining Ramgen Options

	Hosting Clips on a Web Server
	Web Server MIME Types
	GZIP Encoding for Large Text Files
	Tips for Using GZIP

	Limitations on Web Server Playback
	No SureStream Clips Encoded for Multiple Bandwidths
	No Secure RealAudio and RealVideo Clips
	Limited Ability to Keep Parallel Clips Synchronized
	No Way to Set Image Streaming Speeds
	RealPix Presentations Require Clip Size Information
	SMIL File Optional
	SMIL Internal Timing Commands Do Not Work
	No Presentation Seeking
	No RTSP URLs
	No Live Broadcasting

	Testing Your Presentation
	Using RealNetworks Logos

	Basic Questions
	Playing Media with RealPlayer
	Creating Streaming Clips
	Getting Production Tools
	Using SureStream
	Writing SMIL Files
	Streaming Clips
	Broadcasting
	Getting Technical Support

	Production Tasks
	Streaming Media Concepts
	RealAudio Clips
	RealVideo Clips
	Flash Clips
	RealText Markup
	RealPix Markup
	Basic SMIL Questions
	Clips and URLs
	Colors and Transparency
	Layouts
	Basic Timing and Groups
	Advanced Timing
	Hyperlinks
	Special Effects
	Advanced Streaming
	Web Page Embedding
	Presentation Delivery

	Color Values
	Using Color Names
	Defining Hexadecimal Color Values
	Using Six-Digit Hexadecimal Values
	Defining Three-Digit Hexadecimal Values

	Specifying RGB Color Values
	Using Standard RGB Color Values
	Specifying RGB Percentages

	Tips for Defining Color Values

	SMIL Tag Summary
	<smil>...</smil>
	Header Tags
	<meta/>
	<layout>...</layout>
	<root-layout/>
	<topLayout>...</topLayout>
	<region/>
	<regPoint/>

	<transition/>

	Clip Source Tags
	Streaming and Information
	Timing and Layout
	Advanced Timing Attributes

	Color and Transparency
	Text Characteristics
	<prefetch/>

	Group Tags
	<seq>...</seq>
	<par>...</par>
	<excl>...</excl>
	<priorityClass>...</priorityClass>

	<switch>...</switch>
	Test Attributes

	Hyperlink Tags
	<a>...
	<area/>

	Animation Tags
	<animate/>
	<animateColor/>
	<animateMotion/>
	<set/>

	RealText Tag Summary
	Window Tag Attributes
	Time and Position Tags
	Font Tag Attributes
	Layout and Appearance Tags
	Hyperlinking Commands

	RealPix Tag Summary
	<imfl>...</imfl>
	<head/>
	<image/>
	<animate/>
	<crossfade/>
	<fadein/>
	<fadeout/>
	<fill/>
	<wipe/>
	<viewchange/>

	Ram File Summary
	Parameter Syntax
	Parameters and Values

	File Type Summary
	Language Codes
	Glossary
	A
	B
	C
	D
	E
	F
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	U
	V
	X

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

